Hochschule Mittweida (FH) Fakultät Elektro- und Informationstechnik

Abschlussprüfung Digitaltechnik **Teilgebiet** Digitale Schaltungstechnik

Bearbeitungszeit: 45 min

Erlaubt ist nur ein Blatt A4 mit eigenen Aufzeichnungen!

AUFGABE	1	2	3
max. Pkte	3	17	10

- Ein CMOS-Schaltkreis ($U_{DD} = 2,0 \text{ V}$) hat bei der Taktfrequenz $f_1 = 200 \text{ MHz}$ eine Verlustleistung $P_V = 5 \text{ W}$. Welchen Wert hat die Taktfrequenz f_2 , wenn die mittlere Stromaufnahme dieses Schaltkreises $I_{DD} = 200 \text{ mA}$ beträgt?
- 2 Gegeben ist ein 14 Bit A/D-Wandler mit einer Referenzspannung U_{ref} = 10 V.
- 2.1 Ermitteln Sie die theoretischen Werte von U_{INmax}, U_{LSB} und U_{MSB}.
- 2.2 Berechnen Sie die **maximale Eingangsspannung** dieses Wandlers, wenn folgende Werte gemessen wurden:

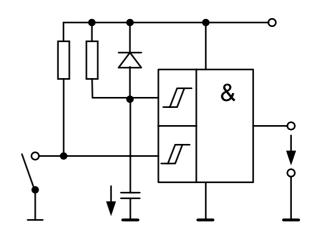
Eingangsspannung	Digitaler Ausgang	
6 mV	0D H	
9,606 V	3E8D H	

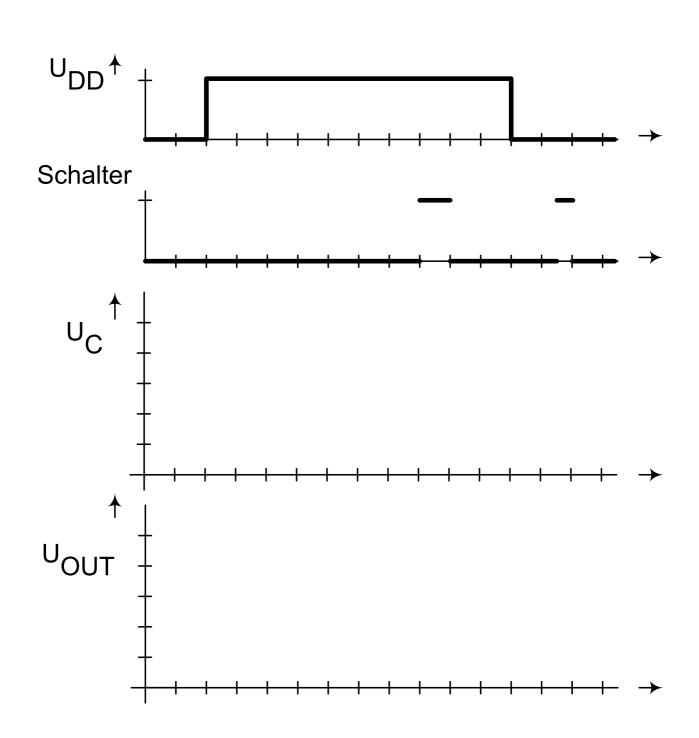
- 2.3 Ermitteln Sie den Nullpunkt- und Endwertfehler dieses Wandlers.
- 2.4 Gegeben ist ein 8 Bit R-2R-Netzwerk mit $R = 3 k\Omega$ und I = 1 mA (Strom einer Stromquelle).
 - a) Berechnen Sie die Referenzspannung dieses Wandlers.
 - b) Wie groß ist die **Ausgangsspannung** beim Eingangswert $d_1 = 20H$?

b. w.

3 Analysieren Sie die nebenstehende Reset-Schaltung.

$$U_{DD} = 5V$$
; R1 = 4,7 k; R2 = 750 k;


C = 1 μ F; D: ideal;


 $U_{SU} = 1.7 \text{ V}; \ U_{SO} = 3.1 \text{ V}$

$$U_{OH} = 5 V$$
; $U_{OL} = 0 V$

3.1 Berechnen Sie die Power-ON-Resetdauer

3.2 Zeichnen Sie **quantitativ** die Signalverläufe der Spannungen **U**_C und **U**_{OUT} in das unten stehende Diagramm ein.

