Introduction

This document contains a list of mathematical problems that you — the applicant for the master program Applied Mathematics for Network and Data Sciences at the University Mittweida — should try to solve. We recommend attempting to solve in a first step as many problems as you can without consulting any text books, web pages, or friends. In a second step you should search for definitions and notions that you do not know so that you become able to solve some additional problems.

Please observe:

- 1. You should verify the solution after you have worked on all problems.
- 2. The problems are intended to check your knowledge by self-evaluation using the provided solutions. You should never send your solutions to the University Mittweida. (They will be ignored.)

Problems

Exercise 1 Prove that for any real positive x, the inequality

$$x + \frac{1}{x} \ge 2$$

is satisfied.

Exercise 2 Prove by induction that the equality

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

is satisfied for any nonnegative integer n and any $x, y \in \mathbb{R}$.

Exercise 3 Show that there are infinitely many primes.

Hint: You can assume that the unique prime factorization theorem is known.

Exercise 4 Let n be a positive integer. Find the value of the double sum

$$\sum_{k=0}^{n} \sum_{j=0}^{k} (-1)^{j} k.$$

Exercise 5 Let G be a group and $x, y, z \in G$. Prove that xz = yz implies x = y.

Exercise 6 Let A, B be sets, $f: A \to B$ a mapping, and $Y, Z \subseteq B$. Prove

$$f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z).$$

Hint: The set $f^{-1}(Y)$ is defined as the set of all $x \in A$ such that $f(x) \in Y$.

Exercise 7 Let n be a positive integer and $A = (a_{ij})$ a real $n \times n$ matrix with determinant $\det A = \delta$. Find $\det(\alpha A)$ for any fixed $\alpha \in \mathbb{R}$.

Exercise 8 Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ be linearly independent vectors. Give a formula for the volume of the parallelepiped spanned by $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

Exercise 9 Let k > 0 be an integer. Show that

$$x \equiv y \iff k \ devides \ x - y$$

defines an equivalence relation on \mathbb{Z} .

Exercise 10 Prove that $\sqrt{3}$ is irrational.

Exercise 11 Assume A_1, \ldots, A_n are random events. Show that

$$\Pr\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \Pr(A_i).$$

Exercise 12 Let m be a positive integer, n = m + 2, A a real $m \times n$ matrix of rank m - 1, and $\mathbf{b} \in \mathbb{R}^m$ a fixed vector. Assume that the rank of the matrix $(A|\mathbf{b})$ obtained from A by adding the column \mathbf{b} is equal to the rank of A. Describe the solution space of the system of linear equations $A\mathbf{x} = \mathbf{b}$.

Exercise 13 Assume the two real random variables X and Y are independent and uniformly distributed in [0,1]. Find the probability $\Pr(\{|X-Y|<\frac{1}{2}\})$.

Exercise 14 Consider the random experiment of throwing two dice. Define the random variable X as the maximum of the two resulting numbers. Calculate the expectation $\mathbb{E}X$.

Exercise 15 Prove that

$$\left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots\right) \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots\right) = 1.$$

Exercise 16 Let n be a positive integer. Find the number of different nonnegative integer solutions of

$$x + y + z = n.$$

Exercise 17 Let A be a nonempty set. Assume that there exists an injective mapping $f: A \to B$ into a set B. Show that there exists a surjective mapping from B to A.

Exercise 18 Prove that the Cartesian product of two countable sets is countable.

Exercise 19 What are the accumulation points of the sequence

$$x_n = \left(-1 - \frac{1}{n}\right)^n?$$

Exercise 20 Let m > 1 be an integer that is not a prime. Prove that $\mathbb{Z}/m\mathbb{Z}$ is not a field.

Exercise 21 Calculate 123456⁷⁸ mod 5.

Exercise 22 Let n be a positive integer. How many different local maximum points has the real function

$$f(x) = \prod_{k=0}^{2n+1} (x-k)?$$

Exercise 23 Let G be a simple undirected graph with n vertices and m edges such that $m \ge n$. Show that G has a cycle.

Exercise 24 Find the value of the following integral:

$$\int_0^1 \int_0^x \int_0^y yz \, dz \, dy \, dx$$

Exercise 25 Solve the differential equation

$$\frac{dy}{dt} = y + t$$

for the initial value y(0) = 1.