A conjecture on the s-rainbow polynomial

Thomas Lange
University of Applied Sciences Mittweida

Given a graph $G=(V, E)$ together with an edge-coloring $c: E \rightarrow\{1, \ldots, k\}$ with k colors, we say that two vertices $s, t \in V$ have a rainbow-path when there exists an s, t-path where all edges on the path have different colors. If for a fixed vertex s, c permits for all vertices t a rainbow-path, we say that c is an s-rainbow coloring. The s-rainbow polynomial $\rho(G, s, x)$ is a polynomial whose evaluation at $x \in \mathbb{N}$ gives the number of s-rainbow colorings of G with x colors. In 2016, Dod, Kischnick and Tittmann conjectured the following lower bound where u is an articulation which separates G in G_{1} and G_{2} with $s \in V\left(G_{1}\right)$:

$$
\rho(G, s, x) \geq \rho\left(G_{1}, s, x-\operatorname{ecc}\left(G_{2}, u\right)\right) \cdot \rho\left(G_{2}, u, x-\operatorname{ecc}\left(G_{1}, s\right)\right)
$$

In this talk we strengthen this conjecture to

$$
\rho(G, s, x) \geq \rho\left(G_{1}, s, x-e c c\left(G_{2}, u\right)\right) \cdot \rho\left(G_{2}, u, x-d(s, u)\right)
$$

where $d(s, u)$ is the distance between s and u (both in G and G_{1}) and prove this stronger variant for $d(s, u) \leq e c c\left(G_{2}, u\right)+1$.

