Introduction

This document contains a list of mathematical problems that you - the applicant for the master program Applied Mathematics for Network and Data Sciences at the University Mittweida - should try to solve. We recommend attempting to solve in a first step as many problems as you can without consulting any text books, web pages, or friends. In a second step you should search for definitions and notions that you do not know so that you become able to solve some additional problems.

Please observe:

1. You should verify the solution after you have worked on all problems.
2. The problems are intended to check your knowledge by self-evaluation using the provided solutions. You should never send your solutions to the University Mittweida. (They will be ignored.)

Problems

Exercise 1 Prove that for any real positive x, the inequality

$$
x+\frac{1}{x} \geq 2
$$

is satisfied.
Exercise 2 Prove by induction that the equality

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

is satisfied for any nonnegative integer n and any $x, y \in \mathbb{R}$.
Exercise 3 Show that there are infinitely many primes.
Hint: You can assume that the unique prime factorization theorem is known.
Exercise 4 Let n be a positive integer. Find the value of the double sum

$$
\sum_{k=0}^{n} \sum_{j=0}^{k}(-1)^{j} k
$$

Exercise 5 Let G be a group and $x, y, z \in G$. Prove that $x z=y z$ implies $x=y$.
Exercise 6 Let A, B be sets, $f: A \rightarrow B$ a mapping, and $Y, Z \subseteq B$. Prove

$$
f^{-1}(Y \cup Z)=f^{-1}(Y) \cup f^{-1}(Z)
$$

Hint: The set $f^{-1}(Y)$ is defined as the set of all $x \in A$ such that $f(x) \in Y$.

Exercise 7 Let n be a positive integer and $A=\left(a_{i j}\right)$ a real $n \times n$ matrix with determinant $\operatorname{det} A=\delta$. Find $\operatorname{det}(\alpha A)$ for any fixed $\alpha \in \mathbb{R}$.

Exercise 8 Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ be linearly independent vectors. Give a formula for the volume of the parallelepiped spanned by $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

Exercise 9 Let $k>0$ be an integer. Show that

$$
x \equiv y \quad \Longleftrightarrow \quad k \text { devides } x-y
$$

defines an equivalence relation on \mathbb{Z}.
Exercise 10 Prove that $\sqrt{3}$ is irrational.
Exercise 11 Assume A_{1}, \ldots, A_{n} are random events. Show that

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Exercise 12 Let m be a positive integer, $n=m+2$, A a real $m \times n$ matrix of rank $m-1$, and $\mathbf{b} \in \mathbb{R}^{m}$ a fixed vector. Assume that the rank of the matrix $(A \mid \mathbf{b})$ obtained from A by adding the column \mathbf{b} is equal to the rank of A. Describe the solution space of the system of linear equations $A \mathbf{x}=\mathbf{b}$.

Exercise 13 Assume the two real random variables X and Y are independent and uniformly distributed in $[0,1]$. Find the probability $\operatorname{Pr}\left(\left\{|X-Y|<\frac{1}{2}\right\}\right)$.

Exercise 14 Consider the random experiment of throwing two dice. Define the random variable X as the maximum of the two resulting numbers. Calculate the expectation $\mathbb{E} X$.

Exercise 15 Prove that

$$
\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots\right)\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+-\cdots\right)=1
$$

Exercise 16 Let n be a positive integer. Find the number of different nonnegative integer solutions of

$$
x+y+z=n
$$

Exercise 17 Let A be a nonempty set. Assume that there exists an injective mapping $f: A \rightarrow B$ into a set B. Show that there exists a surjective mapping from B to A.

Exercise 18 Prove that the Cartesian product of two countable sets is countable.
Exercise 19 What are the accumulation points of the sequence

$$
x_{n}=\left(-1-\frac{1}{n}\right)^{n} ?
$$

Exercise 20 Let $m>1$ be an integer that is not a prime. Prove that $\mathbb{Z} / m \mathbb{Z}$ is not a field.
Exercise 21 Calculate $123456^{78} \bmod 5$.
Exercise 22 Let n be a positive integer. How many different local maximum points has the real function

$$
f(x)=\prod_{k=0}^{2 n+1}(x-k) ?
$$

Exercise 23 Let G be a simple undirected graph with n vertices and m edges such that $m \geq n$. Show that G has a cycle.

Exercise 24 Find the value of the following integral:

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} y z d z d y d x
$$

Exercise 25 Solve the differential equation

$$
\frac{d y}{d t}=y+t
$$

for the initial value $y(0)=1$.

