
Geschichte der Grafikkarten				
1982	Hercules stellt HGC vor und kann damit erstmals Grafik auf dem PC darstellen.			
1983	Der PC wird farbig mit CGA.			
1985	Noch ein wenig mehr Farbe verspricht die EGA-Grafikkarte.			
1988	Der PC wird richtig farbig, dank der VGA-Karte - ab sofort mit analogem Signal.			
1989	Immer höhere Auflösungen und Farbanzahlen sind möglich. Das VESA-Komitee (Video Electronics Standards Association) bringt mit neuen Grafik-Standards endlich Ordnung in den durch das Wettrüsten entstandenen Wildwuchs.			
1992	Der Bildaufbau wird mit Accelerator-Chips erstmals beschleunigt.			
1993	Zwei neue Bus-Systeme, der VESA Local Bus und Intels PCI, umgehen den ISA-Flaschenhals und machen Grafikkarten deutlich schneller.			
1995	nVidia stellt mit dem NV1 den ersten 3D-Beschleuniger vor.			
1996	3dfx stellt mit dem Voodoo Graphics den ersten wirklich brauchbaren 3D-Beschleuniger vor.			
1997	Intel definiert den AGP und stellt somit noch mehr Bandbreite speziell für den 3D- Bereich zur Verfügung.			
1999	nVidia bringt mit der GeForce die erste Grafikkarte mit einer Transform & Lighting Engine in den Consumer-Bereich.			

		Alte Grafikstandards				***	
Jahr	Stan- dard	Bezeichnung	Auflösung	Zeichen	Farben	Darstellung	Signal
1981	MDA MGA	Monochrome Display (Graphics) Adapter	720 x 350	80 x 25	sw	Text	digital
1982	HGC	Hercules Graphics Card	720 x 348	80 x 25	sw	Text / Grafik	digital
1983	CGA	Color Graphics Adapter	300 x 200 320 x 200	40 x 25	16 / 4	Text / Grafik	digital
			640 x 200	80 x 25	16/2	Text / Grafik	digital
1985	EGA	Enhanced Graphics Adapter	320 x 350 320 x 200	40 x 25	16	Text / Grafik	digital
			720 x 350	80 x 25	sw	Text	digital
			640 x 200	80 x 25	16	Grafik	digital
			640 x 350	80 x 25	sw / 16	Text / Grafik	digital
1984	PGA	Professional Graphics Adapter	640 x 480	80x30	16	Text / Grafik	analog
1989	MCGA	Multi Color Graphics Array	640 x 480	80x30	16/256	Text / Grafik	analog

Aktuelle Grafi	kauflösungen (Standards)			
Standard	Bezeichnung	max. Auflösung	Farben	Seiten- verhältnis
VGA	Video Graphics Array	640 x 480	16	4:3
QVGA	Quarter Video Graphics Array	320 x 240	16	4:3
SVGA	Super Video Graphics Array	800 x 600	16	4:3
8514/A (XGA)	(Extended Graphics Array)	1024 x 768	256	4:3
XGA-2	Extended Graphics Array 2	1360 x 1024	65 536	4:3
SXGA+	Super XGA Plus	1280 x 1024		5:4
WXGA	Wide XGA	1400 x 1050		4:3
UXGA	Ultra XGA	1600 x 1200		4:3
WSXGA+	Wide Super XGA Plus	1680 x 1050		16:10
WUXGA	Wide Ultra XGA	1920 x 1200		16:10
SUXGA (QXGA)	Super Ultra XGA (Quad XGA)	2048 x 1536		4:3
QUXGA	Quad Ultra XGA	3200 x 2400		4:3
QWUXGA (WQUXGA)	Quad Wide Ultra XGA (Wide Quad Ultra XGA)	3840 x 2400		16:10

Grafikadapter

Arten von Grafikadaptern

Frame-Buffer:

Das sind die ersten und einfachsten Adapter. Sie erhalten die von der CPU aufbereiteten Bilddaten und geben sie direkt über den DAU an den Monitor weiter.

Grafikbeschleuniger:

Diese Adapter entlasten die CPU und übernehmen aufwendige Grafikfunktionen (Konvertierungen, Fensteranordnungen, Flächenberechnungen, 2D-Grafikfunktionen)

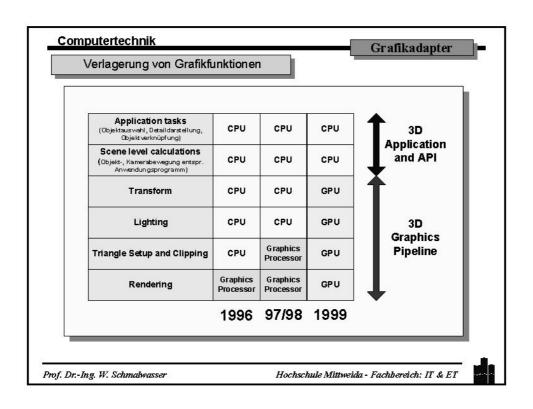
Grafikprozessoren - GPU (Graphic Processing Unit) :

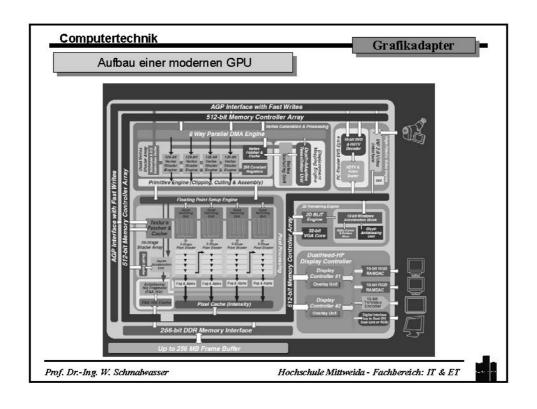
Diese sehr leistungsfähigen Grafikprozessoren übernehmen ein Großteil aller 2D- und 3D-Grafikberechnungen. Sie arbeiten mit Datenbreiten von bis zu 256 Bit und Taktfrequenzen >500 MHz.

Prof. Dr.-Ing. W. Schmalwasser

Hochschule Mittweida - Fachbereich: IT & ET

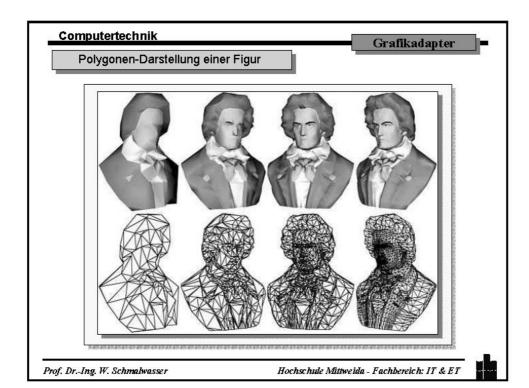
Computertechnik


Grafikadapter


Grafikprozessoren

- Hauptproblem bei Framebuffer- und Beschleunigerkarten war die Geschwindigkeit
 - 3D Grafikberechnungen stellten große Anforderungen an die CPU
 - Hoher Datentransfer über den Bus zur Grafikkarte
 - Speicherarchitektur (DRAM): keine gleichzeitigen Lese- und Schreibzugriffe möglich, d.h. RAMDAC musste mit dem Auslesen warten, wenn die CPU in den Speicher geschrieben hat und umgekehrt
- Lösung: Einführen spezieller Grafikprozessoren (GPUs) auf modernen Grafikkarten
 - CPU schickt Zeichenbefehle, GPU berechnet die Pixel und damit den Inhalt des Bildspeichers
 - GPU ist schneller, entlastet die CPU
 - Weniger Datentransfer auf dem Systembus

Prof. Dr.-Ing. W. Schmatwasser


Grafikadapter

Funktionen von 3D-Karten

- · Objekte werden in Dreiecke zerlegt "Triangle Setup"
- · Diese werden im "Rasterizer" mit farbigen Pixeln gefüllt
- · Nicht sichtbare Dreiecke werden vom Rendervorgang ausgeschlossen
- Mit bekannten Polygon-Eckpunkten werden alle Zwischenpunkte durch Interpolation bestimmt
- Mittels "Color Calculator" erfolgt das Setzen der Pixel und der Farbbestimmung. Hier werden Entfernung (Fog), Transparenz (Alphawerte), und Reflektion (Specular) in die Darstellung einbezogen
- "Anti-Aliasing" zur Reduzierung der Treppeneffekte (da Dreiecke nicht beliebig klein sein können)
- Überprüfung mittels Z-Buffer, ob sich Elemente vor oder hinter Objekten befinden (meist mit "Stencil-Buffer" kombiniert)
- · Stencil-Buffer schützt Polygone vor versehentlichem "Übermalen"

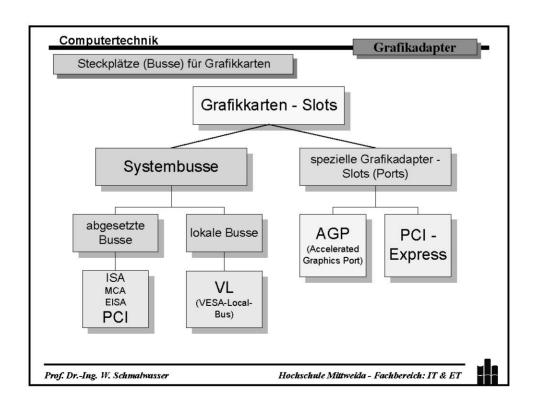
Prof. Dr.-Ing. W. Schmalwasser

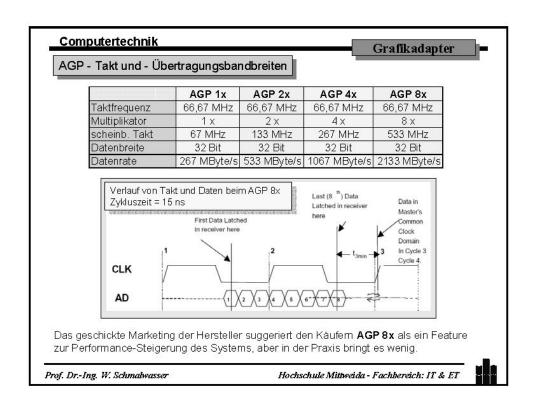
Grafikadapter

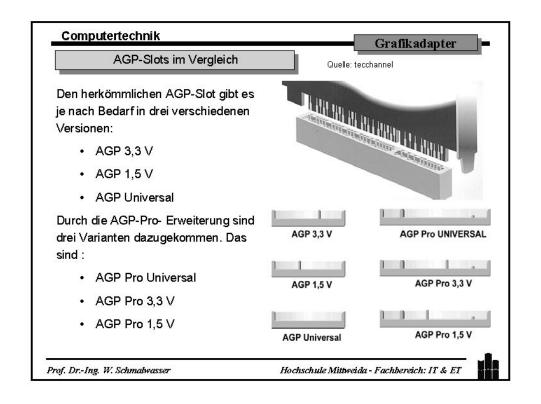
Entwicklung bei Grafikkarten

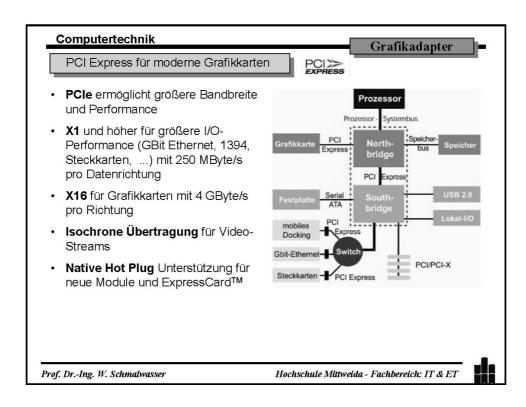
Die neue Generation von Grafikkarten erlaubt eine freie Programmierung der Rendering-Pipeline:

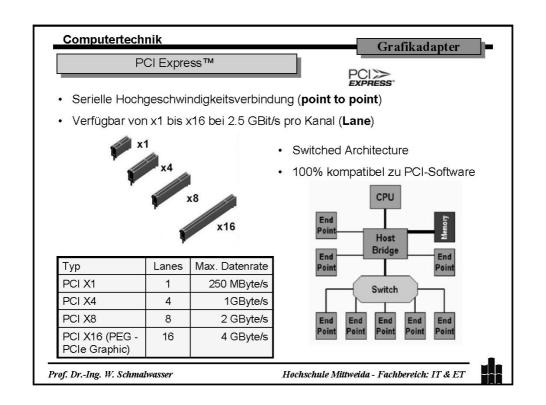
- Pixelshader
- Vertexshader
- Multitexturing

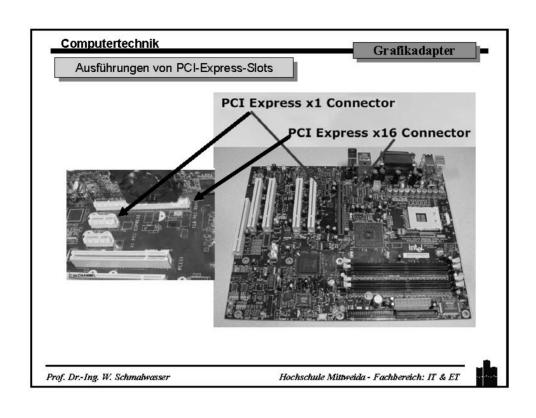

– ...

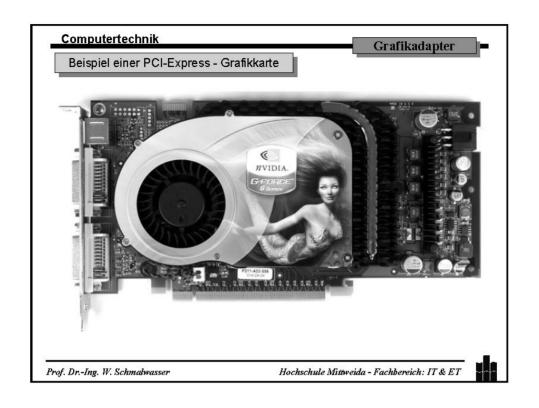

Entwicklung:

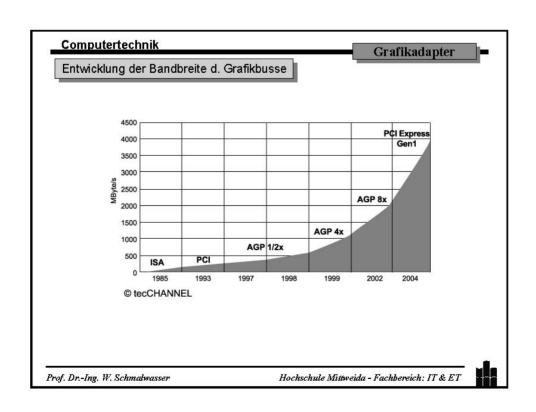

- Ausbau der Parallelität
- Erhöhung der RAM-Geschwindigkeit
- "Beliebig lange" Shader-Programme
- Benutzung der GPU nicht nur für Grafik
- Die derzeitige Entwicklung der Grafikhardware verläuft schneller als die Entwicklung der CPUs

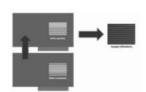

Prof. Dr.-Ing. W. Schmalwasser










100 0 1 DCI 5		Grafikadapter
AGP 8x und PCI-Express	s x16 im Vergieich	
Interface	AGP 8x	PCI Express x16
Max. Busbreite	32 Bit	32 serielle Leitungspaare
Max. Taktrate	266 MHz (66 MHz)	2,5 (5) GHz
Max. Bandbreite uni- /bidirektional (GByte/s)	1,99 / 1,99 GByte/s	3,73 / 7,46 GByte/s (7,46 / 15 GByte/s)
Bandbreite pro Pin	~18 Mbit/s	~100 Mbit/s
Max. Tiefe der Request-Pipeline	32	256
Datenlänge des Request	8 - 64 Byte	4 - 4096 Byte
Unabhängige Daten-Streams	bis zu 3: PCI, LP (linear programmiert), ISOC (isochron)	bis zu 8 (VC0-7)
Art der isochronen Übertragung	partiell	voll
Shared Memory	ja (GART)	ja (OS/Treiber)
Physikalische Schnittstelle	Punkt-zu-Punkt-Verbindung	differenzielle Verbindung
Taktgeber	externer synchroner Takt	intemer Takt
Max. Verlustleistung	25 W (50/110 W bei AGP Pro)	25 W, 75 W, Pro-Variante in Vorbereitung
Anzahl der Pins	132	164
Einführung (Jahr)	2002	2004

Multi-GPU-Technik

Vergrößerung der 3D-Grafikleistung durch Lastverteilung der Rechenarbeit auf mehrere Grafikchips → Multi-GPU-Technik

Grafikadapter

Ausgewählte Multi-GPU-Techniken				
Kürzel	Bezeichnung	Hersteller		
SLI	Scalable Link Interface	NVIDIA		
XFire	Crossfire	ATI (AMD)		
SLI	Scan Line Interleave	3dfx		
AMR	Multi-Rendering	ATI		
AFR Alternate Frame Rendering		ATI		

Prof. Dr.-Ing. W. Schmalwasser

Hochschule Mittweida - Fachbereich: IT & ET

Computertechnik

Grafikadapter

Scalable Link Interface (SLI)

- Mit dem Scalable Link Interface von Nvidia ist eine Zusammenschaltung von zwei oder mehr Grafikchips zur Leistungssteigerung beim Rendem (SLI Frame Rendering) oder dem Einsatz von bis zu vier Bildschirmen (SLI Multi View) möglich.
- Die Verbindung erfolgte anfänglich mit einer speziellen SLI-Bridge und heutzutage über den PCIe, wobei ein spezieller Chipsatz erforderlich ist.
- · SLI funktioniert nur mit identischen Grafikkarten.

Prof. Dr.-Ing. W. Schmalwasser

Grafikadapter

ATI Crossfire

- Bei ATI Crossfire werden zwei Grafikkarten in einem PCI-Express-System gleichzeitig betrieben.
- · Crossfire basiert dabei auf dem älteren ATI Multi-Rendering.
- · Verbindungsmöglichkeiten:
 - Ein spezielles externes Monitorkabel verbindet Master- und Slave-Karte miteinander z.B. X1900
 - Natives Crossfire (interne Verbindung) z.B. X1650XT
 - Verbindung über PCIe z.B. X1300

Prof. Dr.-Ing. W. Schmalwasser

Hochschule Mittweida - Fachbereich: IT & ET

Computertechnik

Grafikadapter

Farbtiefe und Speicherbedarf

Die Farbtiefe gibt an, wie viele Farben darstellbar sind.

Farbtiefe	Name	Kodierung	darstellbare Farben
16 Bit	High Color	R=5 Bit; G=6 Bit; B=5 Bit	216 = 65.536
24 Bit	True Color	Je 8 Bit für R, G und B	224 = 16.777.216
32 Bit	Giga Color (True Color mit 8 Bit Alphakanal)	Je 8 Bit für R, G, B und α	2 ²⁴ = 16.777.216

Von der Farbtiefe und der Auflösung hängt der Bedarf an Grafikspeicher ab.

Minimaler Speicherbedarf = Auflösung * Farbtiefe [Byte]

Mehr Speicher bedeutet Geschwindigkeitszuwachs, da weniger Daten über den Bus übertragen werden müssen.

Eine größere Auflösung und größere Farbtiefe senkt die Bildwiederholrate (Vertikalfrequenz).

Prof. Dr.-Ing. W. Schmalwasser

Grafikadapter

Frequenzen

- · Bildwiederholrate (Vertikalfrequenz)
 - gibt an, wie oft das Bild am Monitor pro Sekunde erneuert wird. Die Wiederholrate wird in Hertz (Hz) gemessen. Ab etwa 70Hz bemerken die meisten Menschen kein Flimmern mehr. Als ergonomisch gelten mindestens 85 Hz. (bei CRT-Monitoren)
- Horizontalfrequenz
 - Anzahl der Zeilen, die pro Sekunde aufgebaut werden können
 - muss auf die Vertikalfrequenz abgestimmt sein, damit das Bild den Monitorbereich auch horizontal genau ausfüllt
- Pixelfrequenz
 - Hängt vom RAMDAC ab
 - Bestimmt die erforderliche Videobandbreite des Monitors
 - Begrenzt bei vorgegebener Auflösung die maximal mögliche Vertikalfrequenz

Prof. Dr.-Ing. W. Schmalwasser

