
Basics of Functional Analysis

1 Metric Spaces

Definition 1 A metric space X is defined to be a nonempty set X together
with a real function  X ×X→ R, satisfying 3 conditions:

1. (xy) ≥ 0 ∧ (xy) = 0 ⇐⇒ x = y

(nonnegativity, nondegeneracy)

2. (xy) = (yx) ∀xy ∈ X (symmetry)

3. (xy) ≤ (x z) + (zy) ∀xy z ∈ X (triangle inequality)

(xy) is called the distance function or theMetric in X.

Definition 2 Let (X ) be a metric space, x0 ∈ X;
The set (x0) = {x ∈ X | (xx0)  } is called an open ball centered at
x0 with the radius , or is called the − neighbourhood of x0

Definition 3 The proper subset  ⊂ X is called open,
if ∀x ∈  ∃  0 | (x) ⊆ 

Definition 4 The proper subset  ⊂ X is called the neighbourhood of x0,
if it contains an −neighbourhood of x0.

Definition 5 x0 is an interior point of  ⇐⇒ ∃  0 | (x0) ⊂ 

Definition 6 The proper subset  ⊂ X is called bounded, if  is completely
contained within an open ball (y) y ∈ X, 0   ∞.

Definition 7 The point x0 ∈ X is a limit point of a set  ⊂ X , if every
open ball centered at x0 contains a point x ∈ ; x 6= x0. The set of all

limit points of  is called the derivated set +

Definition 8 The set  = ∪+ is called the closure or the closed cover
of 

Definition 9 The subset  ⊂  is called closed, if + ⊆ 

Definition 10 The set  is called dense in , if  ⊂  ∧  = 
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Definition 11 A sequence {x}∞=1 ⊂ X is called convergent, if there

exists an element x0 ∈ X fulfilling the condition lim→∞ (xx0) = 0 x0 is

called the limit of the sequence.

Definition 12 Cauchy sequence

A sequence {x}∞=1 ⊂ X is said to be Cauchy, if given any   0 there

exists an integer 0() such that (xx)   whenever   0()

 lim→∞ (xx) = 0

Definition 13 A metric space X is complete, if every Cauchy sequence in
X converges to a point of X.

Definition 14 Let (X ) be a metric space. Subset  ⊂ X is called se-

quentially compact, if every sequence {x}∞=1 ⊂  contains a convergent

subsequence {ex}∞=1 ⊂  with lim→∞x´ = x ∈ X

Definition 15 The subset  ⊂ X is called compact, if every sequence

{x}∞=1 ⊂  contains a convergent subsequence {ex}∞=1 ⊂ 

with lim→∞ex = x ∈ 

Notation 16  ⊂ X is compact ⇐⇒  ⊂ X is sequentially compact and
closed.

1.1 Operators

Definition 17 A unique mapping from  to ,  :  →  is called an

operator: x = y

Definition 18 The range of  is the set

 () = {y ∈  | ∃x ∈    (x) = y}

Definition 19 The operator  : →  is called

• surjective (onto) ⇐⇒  () = 

• injective (one-to-one)⇐⇒  () =  () y  = 

• bijective ⇐⇒  is surjective and injective.

Definition 20 If the operator  :  →  is bijective, then there exists the

inverse operator −1 :  → , which is defined by −1y = x ⇐⇒
x = y.
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Definition 21 The operator  : →  is called continuous at x0 ∈ 

if ∀  0 ∃ = (0 ) | (x x0)   ∀x ∈  with (xx0)   If

 is continuous at every point x0 ∈  then  is called continuous on  In

Addition, if (0 ) is independent of 0 for all  then  is called uniformly

continuous on 

Definition 22 A bijective continuous mapping  :  →  , with a con-

tinuous inverse mapping is called a homeomorphism. Two set are called

homeomorph ⇔ ∃ homeomorphism  : → .

Definition 23 Let  be closed. The mapping  :  →  is called a con-

traction mapping, if there exists a number 0    1 such that

(x y) ≤  · (xy) ∀ xy ∈ 

Theorem 24 BANACH Fixed Point Theorem (FPT)

Let  be a closed subset of the complete metric space (X ) with a contraction
mapping  : → . Then  admits a unique fixed-point x∗ ∈  i.e. x∗ is
the solution of the fixed point equation x = x

Then the iterative sequence {x}∞=0 which starts with an arbitrary element
x0 ∈  defined by +1 = x, tends to x

∗ as n tends to infinity. The
following inequalities are true and describe the speed of convergence:

• a priori : (xx∗) ≤ 

1−(x0x1)

• a posteriori : (xx∗) ≤ 

1−(xx−1)

2 Linear Spaces

Definition 25 A vector space over a field K ( K = R or K = C ) is a

nonempty set X together with two binary operations that satisfy the eight

axioms listed below. (Elements of X are called vectors. Elements of K are

called scalars.)

(A) The first operation, addition, takes any two elements x ∈ X y ∈ X
and assigns to them a third, unique element which is commonly written

as x+ y ∈ X and called the sum of these two elements.

(M) The second operation takes any scalar  ∈ K and any vector x ∈ X
and gives another unique element x ∈ X. The multiplication is called
the scalar multiplication of x by .
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To qualify as a vector space, the set X and the operations of addition and
scalar multiplication must adhere to a number of requirements called the

Axioms of the linear space.

Let x y and z be arbitrary vectors in X, and  and  be scalars in K.

(A1) x+ (y + z) = (x+ y) + z (Associativity of addition)

(A2) x+ y = y + x (Commutativity of addition)

(A3) There exists a unique element O ∈ X such that x+O = x ∀x ∈ X
(zeroidentity element of addition)

(A4) For every x ∈ X, there exists a unique element (−x) ∈ X such that
x+ (−x) = O
(Inverse element of addition )

(M1) (+ )x = x+ x (Distributivity of scalar multiplication

with respect to field addition)

(M2) (x+ y) = x+ y (Distributivity of scalar multiplication

with respect to vector addition)

(M3) ()x = (x) (Compatibility of scalar multiplication

with field multiplication)

(M4) 1x = x; (1 ∈ K, Identity element of scalar multiplication)

Notation 26 If K = R (K = C) then we get a real (complex) linear space.

Definition 27 Let U be a subset of X. Then U is a subspace if and ony if
it satisfies the following conditions:

a) If x and y are elements of X, then the sum x+ y is an element of U
b) If x is an element of U and  is a scalar from K, then the scalar product
x is an element of U

Definition 28 Let U be a subspace of X and 0 ∈ X then

 = {x0 + y | y ∈ U} ≡ x0 +U

is called linear manifold in X
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Definition 29 Let A be a subset  ⊂ X The set of all finite linear combi-
nations of elements of 

 =

(
X
=1

x | x ∈   ∈ K  ∈ N
)

is called the linear span of 

Definition 30 Let U and V be subspaces of X, then

U+V = ( ∪  )

is called the sum of U and V Additionally, if U ∩V = {O} 
then U+ V is called the direct sum U⊕ V Every z ∈ U⊕ V has a unique
representation in the form z = x+ y with x ∈ U and y ∈ V.

Definition 31 If X = U ⊕ V, then the subspaces U ⊂ X and V ⊂ X are

called complementary.

Definition 32 The set {x1x2 x} ⊂ X is called linearly independent, if
X
=1

x = 0⇐⇒1 = 2 =  =  = 0

Definition 33 The set  ⊂ X is called linearly independent, if every

finite subset of  is linearly independent.

Definition 34 A linearly independent subset  ⊂ X with X =  is

called a basis in X

Definition 35 If there exists a basis of X with || =  then every basis of

X consists of  elements: dimX =  If there is no finite  then X is called
infinitely dimensional.

Definition 36 Let X and Y be linear spaces over K. X and Y are said to
be linear isomorph, if there exists a bijection  : X→ Y with the property

(x+ y) = (x) + (y) ∀xy ∈ X;   ∈ K
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2.1 Normed Linear Spaces

Definition 37 A (real) normed linear space (V kk) is a (real) linear
space V over the field K together with a function kk  V → R, called the
norm, satisfying the following 3 conditions for any xy ∈ V:

(I) kxk ≥ 0 ∧ kxk = 0 ⇐⇒ x = 0

(nonnegativity and nondegeneracy)

(II) kxk = || kxk   ∈ K (multiplicativity)

(III) kx+ yk ≤ kxk+ kyk (triangle inequality)

kxk is called the norm of the element x.

Notation 38 In any linear normed space V you can introduce the canonical
or induced metric by (xy) = kx− yk ∀xy ∈ V. Therefore every
linear normed space is a metric space.

Definition 39 A linear normed vector space V over the field K which is

complete with respect to the metric (xy) = kx− yk, induced by the norm,
is called a BANACH space.

Definition 40 The set (x0) = {x ∈ B | kx− x0k  } is called an open
ball centered at x0 ∈  with the radius 

Convergence in the BANACH space B:

• Let {x}∞=1 be a sequence in B.
lim→∞ x = x0 ⇐⇒ ∀  0 ∃0() | kx − x0k   ∀ ≥ 0

• {x}∞=1 is Cauchy in B, if
∀  0 ∃0() | kx − xk   ∀ ≥ 0

• Because of the completeness of the BANACH space, every Cauchy se-
quence tends to a limit in the BANACH space.

• Convergence in normed spaces is called norm convergence.

• The set of all norm convergent sequences is linear:

lim→∞ x = x ∧ lim→∞ y = y implies lim→∞(x + y) = x+ y
lim→∞ x = x ∧ lim→∞  =  implies lim→∞ x = x

lim→∞ x = x implies lim→∞ kxk = kxk 
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Definition 41 In a normed space V the norms kk1 and kk2 are said to be
equivalent if ∃ ∈ R   0  0 |  kxk1 ≤ kxk2 ≤ kxk1 ∀x ∈ V
Definition 42 Series in Normed Spaces:

Let x1x2 x  be elements of a linear normed space V s =
X

=1

x

By definition the series

∞X
=1

x converges to a limit s ∈ V if and only if the

associated sequence of partial sums {s} converges to s i.e..

s =

∞X
=1

x ⇐⇒ lim
→∞

s = s

s =

∞X
=1

x is called the sum of the series in V

Definition 43 The series

∞X
=1

x is called absolutely convergent, if the

number series

∞X
=1

kxk is convergent.

2.2 Linear Operators

Definition 44 Let XY be linear normed spaces over the (same) field K. A
mapping A : X→ Y is called a linear operator, if:

A(u+ v) = Au+Av ∀uv ∈ X
A(u) = u ∀ ∈ K ∧ ∀u ∈ X

Image space of A: (A) = {y ∈ Y | y = Ax; x ∈ X}
Null space (kernel) of A: (A) = {x ∈ X | Ax = 0}
Definition 45 the linear operator A : X → Y is called bounded if there

exists some finite positive constant  ∈ R such that kAxk ≤  kxk ∀x ∈ X
Definition 46 The number

kAk = inf { ∈ R |kAuk ≤  kuk ∀u ∈ X}
= sup

kuk=1
kAuk

is called the norm of the operator.
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Theorem 47 The linear operator A : X→ Y is continuous if and only if
it is bounded.

Definition 48 A linear continuous operator A : X → Y is called an iso-

morphism if it is bijective and if A−1 is continuous. That means: An

isomorphism is a linear homeomorphism. Moreover if kAxk = kxk ∀x ∈ X
is satisfied then A is called isometric. Normed spaces which are connected

by an (isometric) isomophism are called (isometricly) isomorph.

Definition 49 The sum T+S of the linear operators T and S is defined by

the equation (T+S)x = Tx+Sx ∀x ∈ X, the product of the operators
T by  ∈ R or  ∈ C is defined by (T)x = (Tx) ∀x ∈ X.

Definition 50 The collection L(XY) of all linear bounded operators
A : X → Y with the sum and the product defined above is called the space

of the linear bounded operators L(XY) or the dual space X0 of X.

Definition 51 The sequence {A}∞=1 ⊂ L(XY) is called norm conver-

gent (strongly convergent) with the limit A ∈ L(XY) if
lim→∞ kAx−Axk = 0 ∀x ∈ X is satisfied.
We write: A

→∞→ A or lim→∞A = A.

Definition 52 Let X, Y, Z be linear spaces and let T : X→ Y; S : Y→ Z
be linear operators. Then the product ST of the operators is defined by

(ST)x = S(Tx) ∀x ∈ X

Definition 53 Let T : X → Y be a linear operator. If there exists a linear
operator S : Y→ X such that :
ST = I ∧ TS = I; with I I identity maps from X to X or Y to Y
then S is the inverse Operator to: T S = T−1
The collection of all invertible operators  ∈ L(XY)is called L(XY) .

3 HILBERT Spaces

Definition 54 An inner product space (H ( )) or pre-HILBERT space is
a linear space H over the field K together with a function ( ) : H×H→ K,
which satisfies the following conditions:

1. (xx) ≥ 0 ∧ (xx) = 0⇔ x = 0 (nonnegativity and nonde-

generacy)

2. (xy) = (yx) (Hermitian symmetry)
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3. (x + y z) = (x z) + (y z) ∀xy z ∈ H; ∈K (linearity

in the first argument).

Definition 55 Let H be a linear space over the field K. The function ( ) :
H×H→ K with the properties 1, 2, 3 is called the inner product.

Theorem 56 Every pre-HILBERT space is a normed space with the norm

kxk =
p
(xx) ∀x ∈ H

Properties of the inner product:

1. (u v) = (uv) ∀uv ∈ H  ∈ K
2. (uv +w) = (uv) + (uw) ∀uvw ∈ H
3. |(uv)| ≤ kuk · kvk ∀uv ∈ H SCHWARZ’s Inequality

Theorem 57 The inner product in a pre-HILBERT space is continuous, i.e.

lim→∞ x = x and lim→∞ y = y imply lim→∞(xy) = (xy)

Definition 58 AHILBERT space is a complete pre-HILBERT space with

respect to the metric (xy) = kx− yk, induced by the norm kxk =
p
(xx).

Definition 59 Let H be a HILBERT space. The two elements uv ∈ H are
orthogonal (u ⊥ v) if (uv) = 0

Definition 60 Let H be a HILBERT space. A system {e}∞=1 is called an
orthonormal system (ONS) if (e e) =  =

½
1  = 

0  6= 


The ONS is called closed or complete, if 


{e} = H

Conclusion 61 ∀ u ∈ H ,∀  0 ∃ ∈ R ∧ ∃0() |°°°°°u−
X
=1

e

°°°°°   ∀  0

Definition 62 A HILBERT space H is called separable, if H has a count-
able subset  = {u1u2 } which is dense in H, i.e.  = H.

Theorem 63 In a separable HILBERT space H, there exists at least one
complete ONS (and the contrary is true, too).
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Theorem 64 Let H be a separable HILBERT space with the ONS {e}∞=1,
u ∈ H, s =

P

=1 e;  ∈ C Then we get:

• ku− sk is minimal for  =  = (u e) ∀
• lim→∞

P

=1 e = s ∈ H
• The seriesP∞

=1 ||2 converges and BESSEL’s InequalityP∞
=1 ||2 ≤ kuk2 is satisfied.

• If the ONS {e}∞=1 is closed, then s = u and we get PARSEVAL’s

equation:
P∞

=1 ||2 = kuk2

Theorem 65 RIESZ - FISCHER

Let {e}∞=1 be an ONS in the HILBERT space H and {}∞=1 be a number
series withP∞

=1 ||2 ∞ =⇒ ∃v ∈ H | (v e) =  ∀ ∧ v =
P∞

=1 e

If {e}∞=1 is closed in H, then v is well defined.

Definition 66 Let H be a HILBERT space with the ONS {e}∞=1, u ∈ H.
The series

P∞
=1(u e)e is called the FOURIER series of u with respect

to the ONS {e}∞=1,
the numbers  = (u e) are called FOURIER coefficients.

Definition 67 The HILBERT spaces H1 H2 are called isometric, if there
exists a unique mapping  : H1 → H2 with:

• (u+ v) = (u) + (v)

• (uv) = ((u) (v)) ∀uv ∈ H1∀  ∈ C

Definition 68 The proper subspaces 1 ⊂ H and 2 ⊂ H of a HILBERT

space H are called orthogonal if and only if the inner product
(uv) = 0 ∀u ∈1∀v ∈2

Definition 69 For any subset  of H the set
⊥ = {v ∈ H | (uv) = 0 ∀u ∈} is called the orthogonal space with
respect to  .

Definition 70 Let V W ⊂ H be closed subspaces of the HILBERT space

H. If every u ∈ H is uniquely described as the sum u = v +w with v ∈ V
and w ∈ W then H is called the direct sum of the subspaces V and W:
H = V⊕W
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Definition 71 W ⊂ H is called an orthogonal complement of the closed
subspace V ⊂ H if and only if W ⊥ V ∧ H = V⊕W

Theorem 72 Let W be the orthogonal complement of V, that means
W ⊥ V ∧ H = V⊕W H: HILBERT space. Then every u ∈ H may be

decomposed uniquely into the sum u = v +w of an element v ∈ V and an
element w ∈W such that (vw) = 0

v is called the orthogonal projection of u onto V and w is called the

orthogonal projection of u onto W.
The mappings P : H → V with Pu = v and Q : H → W with Qu = w are

called orthogonal projectors (Orthoprojector) onto V or onto W.

Theorem 73 Let U be a closed subspace of the HILBERT space H and u be
an arbitrary element of H.
There exists a unique element u0 ∈ U with

a) ku− u0k = min
v ∈ U

ku− vk and
b) (u− u0v) = 0  ∀v ∈U  u− u0 ∈ U⊥

u0 is called the best approximation of u ∈ H with respect to the subspace
U.
Proof: see literature (Kantorowitsch/Akilow)

3.1 Linear Operators in HILBERT Spaces

Definition 74 Given a linear operator in the HILBERT space H with the

domain (A) ⊆ H and the range H; (A) = H. The set

(A∗) = {x ∈ H | ∃y ∈ H  (Aux) = (uy) ∀u ∈ (A)}
is a subset of H. Then the operator A∗ : (A∗) ⊆ H→ H with A∗x = y
is called the adjoint operator (or Hermitian conjugate) of A Thus

(Aux) = (uA∗x)  ∀u ∈ (A)∀x ∈ (A∗)

Definition 75 Let H be a HILBERT space. Given the linear operator A :

(A) ⊆ H→ H with (A) = H A is called

• symmetric ⇐⇒ (Aux) = (uAx) ∀ux ∈ (A)

i.e. A∗x = Ax ∀x ∈ (A) ∧ (A) ⊆ (A∗)

• selfadjoint ⇐⇒ A = A∗ i.e. A∗x = Ax ∀x ∈ (A) = (A∗)
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• skew symmetric ⇐⇒ (Aux) = −(uAx) ∀ux ∈ (A)

• skew adjoint ⇐⇒ A = −A∗

Definition 76 The linear operator A : (A) ⊆ H → H is called positive

definite, if and only if:

(Auu) ≥  kuk2 for ∀u ∈ (A)  ∈ R   0

Definition 77 The complex number  ∈ C is called the eigenvalue of the
operator A : H → H if there exists an element x ∈ H , x 6= 0 such that
Ax = x Every x 6= 0 with Ax = x is called an eigenelement of the

eigenvalue 

Definition 78 Operators in a HILBERT space H over the field K (R or C)
which map from H to K are called functionals or linear forms:
f : H→ K

Definition 79 The functional f : H→ K is called:

• linear, if : f(u+ v) = (u) + (v) ∀uv ∈ H; ∀  ∈ K
• bounded, if: ∃ ∈ R   0 | |(u)| ≤ kuk ∀u ∈ H
• continuous, if: lim→∞ u = u implies lim→∞ f(u) = f(u);
uu ∈ H

Definition 80 Given a linear bounded functional f : H→ K. The number

kfk = sup
kuk=1

|f(u)| u ∈ H

= inf{ ∈ R | |f(u)| ≤ kuk ∀u ∈ H}

is called the norm of the functional.

Theorem 81 The HILBERT space representation theorem (RIESZ)

Let H be a HILBERT space H over the field K with the inner product ( )

and let f(x) be a continuous linear functional in H. Then there exists a fixed
unique element u0 ∈ H such that f(x) = (xu0) ∀x ∈ H and kfk = ku0k 

Definition 82 Given a sequence {x}∞=1 in the HILBERT space H.
If lim→∞ f(x) = f(x) for every linear continuous functional f on H then

{x}∞=1 tends weakly to x ∈ H as n tends to infinity We write: x  x
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Definition 83 A bilinear form on a HILBERT space H over the field K
is a bilinear mapping a : H×H→ K. That means:

a(u+ vw) = a(uw) + a(vw)

a(w u+ v) = a(wu) + a(wv) ∀uvw ∈ H ∀  ∈ K

Definition 84 The bilinear form a : H×H→ K is called

• bounded, if ∃   0;  ∈ R | |a(uv)| ≤  kuk kvk ∀uv ∈ H
• symmetric, if a(uv) = a(vu) ∀uv ∈ H
• positive semidefinite, if a(uu) ≥ 0 ∀u ∈ H
• positive definite, if a(uu) ≥  kuk2 ∀u ∈ H ∧   0  = 

3.2 The space L2( )

Elements: measurable functions f : ( )→ C, with ()

Z


|f()|2  ∞

These functions are called square-integrable.

Arithmetic operations: f() + g() and. f()  ∈ C are calculated

pointwise

Inner product/Norm: (f g) = ()

Z


f()g() kfk2 = ()
Z



|f()|2 

SCHWARTZ’s inequality: |(f g)| ≤ kfk kgk  i.e.¯̄̄̄
¯̄()

Z


f()g()

¯̄̄̄
¯̄
2

≤
⎛⎝() Z



|f()|2 
⎞⎠ ·

⎛⎝() Z


|g()|2 
⎞⎠

Basis systems:

A) LEGENDRE polynomials

B) ONS with trigonometric functions

C) ( ) = (0  ) : complete ONS:

ϕ () =
1√

exp ()  = 0±1±2   =

2
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Properties:

• The space L2( ) is infinite-dimensional.

• L2( ) is complete and separable.
• The elements of L2( ) are classes of functions. f1() and f2() belong
to the same class if f1() = f2() almost everywhere over ( ), i.e. if

f1() 6= f2() on a set of measure zero or ()
Z



|f1()− f2()|  = 0

Definition 85 2(R2) = { : R→ C | () is measurable, (+ 2) = () ∀ ∈ 
1
2

R 2
0
|()|2 ∞

o
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