Basics of Functional Analysis

1 Metric Spaces

Definition 1 A metric space X is defined to be a nonempty set X together with a real function $d, X \times X \to \mathbb{R}$, satisfying 3 conditions:

- 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$, $\land \quad d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$ (nonnegativity, nondegeneracy)
- 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{X} \quad \text{(symmetry)}$
- 3. $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{X}$ (triangle inequality)

 $d(\mathbf{x}, \mathbf{y})$ is called the distance function or the **Metric in** X.

Definition 2 Let (\mathbb{X}, d) be a metric space, $\mathbf{x}_0 \in \mathbb{X}$; The set $K_{\varepsilon}(\mathbf{x}_0) = {\mathbf{x} \in \mathbb{X} \mid d(\mathbf{x}, \mathbf{x}_0) < \varepsilon}$ is called an **open ball** centered at \mathbf{x}_0 with the radius ε , or is called the ε - **neighbourhood of** \mathbf{x}_0 .

Definition 3 The proper subset $A \subset \mathbb{X}$ is called **open**, if $\forall \mathbf{x} \in A \quad \exists r > 0 \mid K_r(\mathbf{x}) \subseteq A$.

Definition 4 The proper subset $U \subset \mathbb{X}$ is called the **neighbourhood of \mathbf{x}_0**, if it contains an ε -neighbourhood of \mathbf{x}_0 .

Definition 5 \mathbf{x}_0 is an interior point of $A \iff \exists \varepsilon > 0 \mid K_{\varepsilon}(\mathbf{x}_0) \subset A$

Definition 6 The proper subset $A \subset \mathbb{X}$ is called **bounded**, if A is completely contained within an open ball $K_r(\mathbf{y}), \mathbf{y} \in \mathbb{X}, 0 < r < \infty$.

Definition 7 The point $\mathbf{x}_0 \in \mathbb{X}$ is a limit point of a set $A \subset \mathbb{X}$, if every open ball centered at \mathbf{x}_0 contains a point $\mathbf{x} \in A$; $\mathbf{x} \neq \mathbf{x}_0$. The set of all limit points of A is called the **derivated set** A^+ .

Definition 8 The set $\overline{A} = A \cup A^+$ is called the closure or the closed cover of A.

Definition 9 The subset $A \subset X$ is called **closed**, if $A^+ \subseteq A$.

Definition 10 The set B is called **dense in** A, if $B \subset A \land \overline{B} = A$.

Definition 11 A sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \subset \mathbb{X}$ is called convergent, if there exists an element $\mathbf{x}_0 \in \mathbb{X}$ fulfilling the condition $\lim_{n\to\infty} d(\mathbf{x}_n, \mathbf{x}_0) = 0$. \mathbf{x}_0 is called the **limit** of the sequence.

Definition 12 Cauchy sequence

A sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \subset \mathbb{X}$ is said to be **Cauchy**, if given any $\varepsilon > 0$ there exists an integer $n_0(\varepsilon)$ such that $d(\mathbf{x}_n, \mathbf{x}_m) < \varepsilon$ whenever $n, m > n_0(\varepsilon)$, *i.e.* $\lim_{n,m\to\infty} d(\mathbf{x}_n, \mathbf{x}_m) = 0$.

Definition 13 A metric space X is complete, if every Cauchy sequence in X converges to a point of X.

Definition 14 Let (\mathbb{X}, d) be a metric space. Subset $A \subset \mathbb{X}$ is called **se**quentially compact, if every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \subset A$ contains a convergent subsequence $\{\widetilde{\mathbf{x}}_n\}_{n=1}^{\infty} \subset A$ with $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x} \in \mathbb{X}$.

Definition 15 The subset $A \subset \mathbb{X}$ is called compact, if every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \subset A$ contains a convergent subsequence $\{\widetilde{\mathbf{x}}_n\}_{n=1}^{\infty} \subset A$ with $\lim_{n\to\infty} \widetilde{\mathbf{x}}_n = \mathbf{x} \in A$.

Notation 16 $A \subset \mathbb{X}$ is compact $\iff A \subset \mathbb{X}$ is sequentially compact and closed.

1.1 Operators

Definition 17 A unique mapping from A to B, $T : A \rightarrow B$ is called an operator: $T\mathbf{x} = \mathbf{y}$

Definition 18 The range of T is the set $T(A) = \{ \mathbf{y} \in B \mid \exists \mathbf{x} \in A \text{ with } T(\mathbf{x}) = \mathbf{y} \}.$

Definition 19 The operator $T : A \to B$ is called

- surjective (onto) $\iff T(A) = B$
- injective (one-to-one) $\iff T(x) = T(y) \quad \curvearrowright \quad x = y$
- **bijective** \iff T is surjective and injective.

Definition 20 If the operator $T : A \to B$ is bijective, then there exists the *inverse operator* $T^{-1} : B \to A$, which is defined by $T^{-1}\mathbf{y} = \mathbf{x} \iff T\mathbf{x} = \mathbf{y}$.

Definition 21 The operator $T : A \to B$ is called continuous at $\mathbf{x}_0 \in A$, if $\forall \varepsilon > 0 \quad \exists \delta = \delta(x_0, \varepsilon) \quad | \quad d_y(T\mathbf{x}, T\mathbf{x}_0) < \varepsilon \quad \forall \mathbf{x} \in A \text{ with } d_x(\mathbf{x}, \mathbf{x}_0) < \delta$. If T is continuous at every point $\mathbf{x}_0 \in A$, then T is called **continuous on** A. In Addition, if $\delta(x_0, \varepsilon)$ is independent of x_0 for all ε then T is called **uniformly continuous on** A.

Definition 22 A bijective continuous mapping $T : A \to B$, with a continuous inverse mapping is called a **homeomorphism**. Two set are called homeomorph $\Leftrightarrow \exists$ homeomorphism $T : A \to B$.

Definition 23 Let A be closed. The mapping $T : A \to A$ is called a contraction mapping, if there exists a number 0 < q < 1 such that $d(T\mathbf{x}, T\mathbf{y}) \leq q \cdot d(\mathbf{x}, \mathbf{y}) \ \forall \ \mathbf{x}, \mathbf{y} \in A.$

Theorem 24 BANACH Fixed Point Theorem (FPT)

Let A be a closed subset of the complete metric space (\mathbb{X}, d) with a contraction mapping $T : A \to A$. Then T admits a unique fixed-point $\mathbf{x}^* \in A$, i.e. \mathbf{x}^* is the solution of the fixed point equation $\mathbf{x} = T\mathbf{x}$.

Then the iterative sequence $\{\mathbf{x}_n\}_{n=0}^{\infty}$ which starts with an arbitrary element $\mathbf{x}_0 \in A$, defined by $x_{n+1} = T\mathbf{x}_n$, tends to \mathbf{x}^* as n tends to infinity. The following inequalities are true and describe the speed of convergence:

- a priori : $d(\mathbf{x}_n, \mathbf{x}^*) \leq \frac{q^n}{1-q} d(\mathbf{x}_0, \mathbf{x}_1)$
- a posteriori : $d(\mathbf{x}_n, \mathbf{x}^*) \leq \frac{q}{1-q} d(\mathbf{x}_n, \mathbf{x}_{n-1}).$

2 Linear Spaces

Definition 25 A vector space over a field \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) is a nonempty set \mathbb{X} together with two binary operations that satisfy the eight axioms listed below. (Elements of \mathbb{X} are called vectors. Elements of \mathbb{K} are called scalars.)

- (A) The first operation, addition, takes any two elements $\mathbf{x} \in \mathbb{X}$, $\mathbf{y} \in \mathbb{X}$ and assigns to them a third, unique element which is commonly written as $\mathbf{x} + \mathbf{y} \in \mathbb{X}$ and called the sum of these two elements.
- (M) The second operation takes any scalar $\lambda \in \mathbb{K}$ and any vector $\mathbf{x} \in \mathbb{X}$ and gives another unique element $\lambda \mathbf{x} \in \mathbb{X}$. The multiplication is called the scalar multiplication of \mathbf{x} by λ .

To qualify as a vector space, the set X and the operations of addition and scalar multiplication must adhere to a number of requirements called the **Axioms of the linear space**.

Let \mathbf{x} , \mathbf{y} and \mathbf{z} be arbitrary vectors in \mathbb{X} , and λ and μ be scalars in \mathbb{K} .

- (A1) $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ (Associativity of addition)
- (A2) x + y = y + x (Commutativity of addition)
- (A3) There exists a unique element $\mathbb{O} \in \mathbb{X}$, such that $\mathbf{x} + \mathbb{O} = \mathbf{x}$ $\forall \mathbf{x} \in \mathbb{X}$ (zero/identity element of addition)
- (A4) For every $\mathbf{x} \in \mathbb{X}$, there exists a unique element $(-\mathbf{x}) \in \mathbb{X}$ such that $\mathbf{x} + (-\mathbf{x}) = \mathbb{O}$

(Inverse element of addition)

- (M1) $(\lambda + \mu)\mathbf{x} = \lambda \mathbf{x} + \mu \mathbf{x}$ (Distributivity of scalar multiplication with respect to field addition) (M2) $(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mu)\mathbf{y}$ (Distributivity of scalar multiplication
- $\begin{array}{ll} \textbf{(M2)} \ \ \lambda(\mathbf{x}+\mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y} & \quad \textbf{(Distributivity of scalar multiplication} \\ & \quad \textbf{with respect to vector addition)} \end{array}$
- (M3) $(\lambda \mu)\mathbf{x} = \lambda(\mu \mathbf{x})$ (Compatibility of scalar multiplication with field multiplication)
- (M4) $1\mathbf{x} = \mathbf{x};$ $(1 \in \mathbb{K}, \text{ Identity element of scalar multiplication})$

Notation 26 If $\mathbb{K} = \mathbb{R}$ ($\mathbb{K} = \mathbb{C}$) then we get a real (complex) linear space.

Definition 27 Let \mathbb{U} be a subset of \mathbb{X} . Then \mathbb{U} is a subspace if and ony if it satisfies the following conditions:

a) If \mathbf{x} and \mathbf{y} are elements of \mathbb{X} , then the sum $\mathbf{x} + \mathbf{y}$ is an element of \mathbb{U} b) If \mathbf{x} is an element of \mathbb{U} and λ is a scalar from \mathbb{K} , then the scalar product $\lambda \mathbf{x}$ is an element of \mathbb{U}

Definition 28 Let \mathbb{U} be a subspace of \mathbb{X} and $x_0 \in \mathbb{X}$ then

$$M = \{\mathbf{x}_0 + \mathbf{y} \mid \mathbf{y} \in \mathbb{U}\} \equiv \mathbf{x}_0 + \mathbb{U}$$

is called **linear manifold** in \mathbb{X} .

Definition 29 Let A be a subset $A \subset X$. The set of all finite linear combinations of elements of A

$$spanA = \left\{ \sum_{k=1}^{m} \lambda_k \mathbf{x}_k \mid \mathbf{x}_k \in A, \quad \lambda_k \in \mathbb{K}, \quad m \in \mathbb{N} \right\}$$

is called the **linear span of** A

Definition 30 Let \mathbb{U} and \mathbb{V} be subspaces of \mathbb{X} , then

$$\mathbb{U} + \mathbb{V} = span(U \cup V)$$

is called the **sum of** U **and** V. Additionally, if $U \cap V = \{O\}$, then U + V is called the **direct sum** $U \oplus V$. Every $z \in U \oplus V$ has a unique representation in the form z = x + y with $x \in U$ and $y \in V$.

Definition 31 If $\mathbb{X} = \mathbb{U} \oplus \mathbb{V}$, then the subspaces $\mathbb{U} \subset \mathbb{X}$ and $\mathbb{V} \subset \mathbb{X}$ are called **complementary**.

Definition 32 The set $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\} \subset \mathbb{X}$ is called linearly independent, if

$$\sum_{k=1}^{m} \lambda_k \mathbf{x}_k = \mathbf{0} \Longleftrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

Definition 33 The set $B \subset X$ is called *linearly independent*, if every finite subset of B is linearly independent.

Definition 34 A linearly independent subset $B \subset \mathbb{X}$ with $\mathbb{X} = \overline{spanB}$ is called a **basis** in \mathbb{X} .

Definition 35 If there exists a basis of X with |B| = n, then every basis of X consists of n elements: dim X = n. If there is no finite n then X is called *infinitely dimensional*.

Definition 36 Let X and Y be linear spaces over K. X and Y are said to be **linear isomorph**, if there exists a bijection $f: X \to Y$ with the property

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}) \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{X}; \quad \alpha, \beta \in \mathbb{K}$$

2.1 Normed Linear Spaces

Definition 37 A (real) normed linear space $(\mathbb{V}, \|.\|)$ is a (real) linear space \mathbb{V} over the field \mathbb{K} together with a function $\|.\|, \mathbb{V} \to \mathbb{R}$, called the norm, satisfying the following 3 conditions for any $\mathbf{x}, \mathbf{y} \in \mathbb{V}$:

- (I) $\|\mathbf{x}\| \ge 0 \land \|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$ (nonnegativity and nondegeneracy)
- (II) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \quad \alpha \in \mathbb{K}$ (multiplicativity)

(III) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

 $\|\mathbf{x}\|$ is called the norm of the element \mathbf{x} .

Notation 38 In any linear normed space \mathbb{V} you can introduce the canonical or induced metric by $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{V}$. Therefore every linear normed space is a metric space.

Definition 39 A linear normed vector space \mathbb{V} over the field \mathbb{K} which is complete with respect to the metric $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$, induced by the norm, is called a **BANACH** space.

Definition 40 The set $K_r(\mathbf{x}_0) = {\mathbf{x} \in \mathbb{B} \mid ||\mathbf{x} - \mathbf{x}_0|| < r}$ is called an open ball centered at $\mathbf{x}_0 \in B$ with the radius r.

Convergence in the BANACH space \mathbb{B} :

- Let $\{\mathbf{x}_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{B} . $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}_0 \iff \forall \varepsilon > 0 \ \exists n_0(\varepsilon) \mid \|\mathbf{x}_n - \mathbf{x}_0\| < \varepsilon \quad \forall n \ge n_0$
- $\{\mathbf{x}_n\}_{n=1}^{\infty}$ is Cauchy in \mathbb{B} , if $\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \mid \|\mathbf{x}_n - \mathbf{x}_m\| < \varepsilon \quad \forall n, m \ge n_0$
- Because of the completeness of the BANACH space, every Cauchy sequence tends to a limit in the BANACH space.
- Convergence in normed spaces is called **norm convergence**.
- The set of all norm convergent sequences is linear: $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x} \land \lim_{n\to\infty} \mathbf{y}_n = \mathbf{y} \text{ implies } \lim_{n\to\infty} (\mathbf{x}_n + \mathbf{y}_n) = \mathbf{x} + \mathbf{y}.$ $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x} \land \lim_{n\to\infty} \alpha_n = \alpha \text{ implies } \lim_{n\to\infty} \alpha_n \mathbf{x}_n = \alpha \mathbf{x}.$ $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x} \text{ implies } \lim_{n\to\infty} \|\mathbf{x}_n\| = \|\mathbf{x}\|.$

Definition 41 In a normed space \mathbb{V} the norms $\|.\|_1$ and $\|.\|_2$ are said to be equivalent if $\exists m, M \in \mathbb{R}, m > 0, M > 0 \mid m \|\mathbf{x}\|_1 \leq \|\mathbf{x}\|_2 \leq M \|\mathbf{x}\|_1 \quad \forall \mathbf{x} \in \mathbb{V}.$

Definition 42 Series in Normed Spaces:

Let $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n, ...$ be elements of a linear normed space $\mathbb{V}, \mathbf{s}_n = \sum_{k=1}^n \mathbf{x}_k$.

By definition the series $\sum_{k=1}^{\infty} \mathbf{x}_k$ converges to a limit $\mathbf{s} \in \mathbb{V}$ if and only if the associated sequence of partial sums $\{\mathbf{s}_n\}$ converges to \mathbf{s} i.e..

$$\mathbf{s} = \sum_{k=1}^\infty \mathbf{x}_k \Longleftrightarrow \lim_{n o \infty} \mathbf{s}_n = \mathbf{s}$$

 $\mathbf{s} = \sum_{k=1}^{\infty} \mathbf{x}_k$ is called the sum of the series in \mathbb{V} .

Definition 43 The series $\sum_{k=1}^{\infty} \mathbf{x}_k$ is called **absolutely convergent**, if the number series $\sum_{k=1}^{\infty} ||\mathbf{x}_k||$ is convergent.

2.2 Linear Operators

Definition 44 Let \mathbb{X}, \mathbb{Y} be linear normed spaces over the (same) field \mathbb{K} . A mapping $\mathbf{A} : \mathbb{X} \to \mathbb{Y}$ is called a **linear operator**, if:

$$\begin{aligned} \mathbf{A}(\mathbf{u} + \mathbf{v}) &= \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} & \forall \mathbf{u}, \mathbf{v} \in \mathbb{X} \\ \mathbf{A}(\alpha \mathbf{u}) &= \alpha A \mathbf{u} & \forall \alpha \in \mathbb{K} \land \forall \mathbf{u} \in \mathbb{X}. \end{aligned}$$

Image space of A: $R(\mathbf{A}) = \{\mathbf{y} \in \mathbb{Y} \mid \mathbf{y} = \mathbf{A}\mathbf{x}; \mathbf{x} \in \mathbb{X}\}$ Null space (kernel) of A: $N(\mathbf{A}) = \{\mathbf{x} \in \mathbb{X} \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$

Definition 45 the linear operator $\mathbf{A} : \mathbb{X} \to \mathbb{Y}$ is called **bounded** if there exists some finite positive constant $C \in \mathbb{R}$ such that $\|\mathbf{A}\mathbf{x}\| \leq C \|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{X}$.

Definition 46 The number

$$\begin{aligned} \|\mathbf{A}\| &= \inf \left\{ C \in \mathbb{R} | \|\mathbf{A}\mathbf{u}\| \le C \|\mathbf{u}\|, \forall \mathbf{u} \in \mathbb{X} \right\} \\ &= \sup_{\|\mathbf{u}\|=1} \|\mathbf{A}\mathbf{u}\| \end{aligned}$$

is called the norm of the operator.

Theorem 47 The linear operator $\mathbf{A} : \mathbb{X} \to \mathbb{Y}$ is continuous if and only if it is bounded.

Definition 48 A linear continuous operator $\mathbf{A} : \mathbb{X} \to \mathbb{Y}$ is called an **iso**morphism if it is bijective and if \mathbf{A}^{-1} is continuous. That means: An isomorphism is a linear homeomorphism. Moreover if $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\| \, \forall \mathbf{x} \in \mathbb{X}$ is satisfied then \mathbf{A} is called **isometric.** Normed spaces which are connected by an (isometric) isomophism are called (isometricly) isomorph.

Definition 49 The sum $\mathbf{T} + \mathbf{S}$ of the linear operators \mathbf{T} and \mathbf{S} is defined by the equation $(\mathbf{T} + \mathbf{S})\mathbf{x} = \mathbf{T}\mathbf{x} + \mathbf{S}\mathbf{x}$ $\forall \mathbf{x} \in \mathbb{X}$, the product of the operators \mathbf{T} by $\lambda \in \mathbb{R}$ or $\lambda \in \mathbb{C}$ is defined by $(\lambda \mathbf{T})\mathbf{x} = \lambda(\mathbf{T}\mathbf{x})$ $\forall \mathbf{x} \in \mathbb{X}$.

Definition 50 The collection $\mathbb{L}(\mathbb{X}, \mathbb{Y})$ of all linear bounded operators $\mathbf{A} : \mathbb{X} \to \mathbb{Y}$ with the sum and the product defined above is called the **space** of the linear bounded operators $\mathbb{L}(\mathbb{X}, \mathbb{Y})$ or the **dual space** \mathbb{X}' of \mathbb{X} .

Definition 51 The sequence $\{\mathbf{A}_n\}_{n=1}^{\infty} \subset \mathbb{L}(\mathbb{X}, \mathbb{Y})$ is called **norm conver** gent (strongly convergent) with the limit $\mathbf{A} \in \mathbb{L}(\mathbb{X}, \mathbb{Y})$ if $\lim_{n\to\infty} \|\mathbf{A}_n \mathbf{x} - \mathbf{A} \mathbf{x}\| = 0 \quad \forall \mathbf{x} \in \mathbb{X}$ is satisfied. We write: $\mathbf{A}_n \xrightarrow{n\to\infty} \mathbf{A} \quad or \lim_{n\to\infty} \mathbf{A}_n = \mathbf{A}$.

Definition 52 Let \mathbb{X} , \mathbb{Y} , \mathbb{Z} be linear spaces and let $\mathbf{T} : \mathbb{X} \to \mathbb{Y}$; $\mathbf{S} : \mathbb{Y} \to \mathbb{Z}$ be linear operators. Then the product \mathbf{ST} of the operators is defined by $(\mathbf{ST})\mathbf{x} = \mathbf{S}(\mathbf{Tx}) \quad \forall \mathbf{x} \in \mathbb{X}.$

Definition 53 Let $\mathbf{T} : \mathbb{X} \to \mathbb{Y}$ be a linear operator. If there exists a linear operator $\mathbf{S} : \mathbb{Y} \to \mathbb{X}$ such that : $\mathbf{ST} = \mathbf{I}_x \quad \wedge \quad \mathbf{TS} = \mathbf{I}_y$; with $\mathbf{I}_x, \mathbf{I}_y$ identity maps from \mathbb{X} to \mathbb{X} or \mathbb{Y} to \mathbb{Y} then \mathbf{S} is the **inverse Operator** to: $\mathbf{T} \mathbf{S} = \mathbf{T}^{-1}$. The collection of all invertible operators $T \in \mathbb{L}(\mathbb{X}, \mathbb{Y})$ is called $\mathbb{L}_{inv}(\mathbb{X}, \mathbb{Y})$.

3 HILBERT Spaces

Definition 54 An inner product space $(\mathbb{H}, (., .))$ or pre-HILBERT space is a linear space \mathbb{H} over the field \mathbb{K} together with a function $(., .) : \mathbb{H} \times \mathbb{H} \to \mathbb{K}$, which satisfies the following conditions:

- 1. $(\mathbf{x}, \mathbf{x}) \ge 0$ \land $(\mathbf{x}, \mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$ (nonnegativity and nondegeneracy)
- 2. $(\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})}$ (Hermitian symmetry)

3. $(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{z}) + \beta(\mathbf{y}, \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{H}; \alpha, \beta \in \mathbb{K} \quad (linearity in the first argument).$

Definition 55 Let \mathbb{H} be a linear space over the field \mathbb{K} . The function (.,.): $\mathbb{H} \times \mathbb{H} \to \mathbb{K}$ with the properties 1, 2, 3 is called the **inner product**.

Theorem 56 Every pre-HILBERT space is a normed space with the norm $\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})} \quad \forall \mathbf{x} \in \mathbb{H}$

Properties of the inner product:

1. $(\mathbf{u}, \alpha \mathbf{v}) = \overline{\alpha}(\mathbf{u}, \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}, \ \alpha \in \mathbb{K}$ 2. $(\mathbf{u}, \mathbf{v} + \mathbf{w}) = (\mathbf{u}, \mathbf{v}) + (\mathbf{u}, \mathbf{w}) \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{H}$ 3. $|(\mathbf{u}, \mathbf{v})| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}|| \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H} \quad \text{SCHWARZ's Inequality}$

Theorem 57 The inner product in a pre-HILBERT space is continuous, i.e. $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}$ and $\lim_{n\to\infty} \mathbf{y}_n = \mathbf{y}$ imply $\lim_{n\to\infty} (\mathbf{x}_n, \mathbf{y}_n) = (\mathbf{x}, \mathbf{y})$.

Definition 58 A HILBERT space is a complete pre-HILBERT space with respect to the metric $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$, induced by the norm $||\mathbf{x}|| = \sqrt{(\mathbf{x}, \mathbf{x})}$.

Definition 59 Let \mathbb{H} be a HILBERT space. The two elements $\mathbf{u}, \mathbf{v} \in \mathbb{H}$ are orthogonal $(\mathbf{u} \perp \mathbf{v})$, if $(\mathbf{u}, \mathbf{v}) = 0$.

Definition 60 Let \mathbb{H} be a HILBERT space. A system $\{\mathbf{e}_i\}_{i=1}^{\infty}$ is called an orthonormal system (ONS) if $(\mathbf{e}_i, \mathbf{e}_k) = \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$.

The ONS is called closed or complete, if $\overline{span\{\mathbf{e}_i\}} = \mathbb{H}$.

Conclusion 61 $\forall \mathbf{u} \in \mathbb{H}$, $\forall \varepsilon > 0 \quad \exists u_i \in \mathbb{R} \land \exists n_0(\varepsilon) \mid$

$$\left\| \mathbf{u} - \sum_{i=1}^{n} u_i \mathbf{e}_i \right\| < \varepsilon \quad \forall n > n_0$$

Definition 62 A HILBERT space \mathbb{H} is called **separable**, if \mathbb{H} has a countable subset $M = {\mathbf{u}_1, \mathbf{u}_2, \ldots}$ which is dense in \mathbb{H} , i.e. $\overline{M} = \mathbb{H}$.

Theorem 63 In a separable HILBERT space \mathbb{H} , there exists at least one complete ONS (and the contrary is true, too).

Theorem 64 Let \mathbb{H} be a separable HILBERT space with the ONS $\{\mathbf{e}_i\}_{i=1}^{\infty}$, $\mathbf{u} \in \mathbb{H}, \mathbf{s}_n = \sum_{i=1}^n \gamma_i \mathbf{e}_i; \gamma_i \in \mathbb{C}$. Then we get:

- $\|\mathbf{u} \mathbf{s}_n\|$ is minimal for $\gamma_i = u_i = (\mathbf{u}, \mathbf{e}_i) \quad \forall i$
- $\lim_{n\to\infty}\sum_{i=1}^n u_i \mathbf{e}_i = \mathbf{s} \in \mathbb{H}$
- The series $\sum_{i=1}^{\infty} |u_i|^2$ converges and BESSEL's Inequality $\sum_{i=1}^{\infty} |u_i|^2 \le ||\mathbf{u}||^2$ is satisfied.
- If the ONS $\{\mathbf{e}_i\}_{i=1}^{\infty}$ is closed, then $\mathbf{s} = \mathbf{u}$ and we get PARSEVAL's equation: $\sum_{i=1}^{\infty} |u_i|^2 = ||\mathbf{u}||^2$

Theorem 65 RIESZ - FISCHER

Let $\{\mathbf{e}_i\}_{i=1}^{\infty}$ be an ONS in the HILBERT space \mathbb{H} and $\{\gamma_i\}_{i=1}^{\infty}$ be a number series with $\sum_{i=1}^{\infty} |\gamma_i|^2 < \infty \implies \exists \mathbf{v} \in \mathbb{H} \mid (\mathbf{v}, \mathbf{e}_i) = \gamma_i \quad \forall i \quad \land \quad \mathbf{v} = \sum_{i=1}^{\infty} \gamma_i \mathbf{e}_i.$

If $\{\mathbf{e}_i\}_{i=1}^{\infty}$ is closed in \mathbb{H} , then \mathbf{v} is well defined.

Definition 66 Let \mathbb{H} be a HILBERT space with the ONS $\{\mathbf{e}_i\}_{i=1}^{\infty}, \mathbf{u} \in \mathbb{H}$. The series $\sum_{i=1}^{\infty} (\mathbf{u}, \mathbf{e}_i) \mathbf{e}_i$ is called the **FOURIER series** of \mathbf{u} with respect to the ONS $\{\mathbf{e}_i\}_{i=1}^{\infty}$, the numbers $u_i = (\mathbf{u}, \mathbf{e}_i)$ are called **FOURIER coefficients**.

Definition 67 The HILBERT spaces \mathbb{H}_1 , \mathbb{H}_2 are called isometric, if there exists a unique mapping $f : \mathbb{H}_1 \to \mathbb{H}_2$ with:

- $f(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v})$
- $(\mathbf{u}, \mathbf{v}) = (f(\mathbf{u}), f(\mathbf{v})) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}_1, \forall \alpha, \beta \in \mathbb{C}$

Definition 68 The proper subspaces $M_1 \subset \mathbb{H}$ and $M_2 \subset \mathbb{H}$ of a HILBERT space \mathbb{H} are called **orthogonal** if and only if the inner product $(\mathbf{u}, \mathbf{v}) = 0 \quad \forall \mathbf{u} \in M_1, \forall \mathbf{v} \in M_2.$

Definition 69 For any subset M of \mathbb{H} the set $M^{\perp} = \{ \mathbf{v} \in \mathbb{H} \mid (\mathbf{u}, \mathbf{v}) = 0 \quad \forall \mathbf{u} \in M \}$ is called the **orthogonal space** with respect to M.

Definition 70 Let \mathbb{V} , $\mathbb{W} \subset \mathbb{H}$ be closed subspaces of the HILBERT space \mathbb{H} . If every $\mathbf{u} \in \mathbb{H}$ is uniquely described as the sum $\mathbf{u} = \mathbf{v} + \mathbf{w}$ with $\mathbf{v} \in \mathbb{V}$ and $\mathbf{w} \in \mathbb{W}$ then \mathbb{H} is called the **direct sum** of the subspaces \mathbb{V} and \mathbb{W} : $\mathbb{H} = \mathbb{V} \oplus \mathbb{W}$. **Definition 71** $\mathbb{W} \subset \mathbb{H}$ *is called an orthogonal complement of the closed* subspace $\mathbb{V} \subset \mathbb{H}$ *if and only if* $\mathbb{W} \perp \mathbb{V} \land \mathbb{H} = \mathbb{V} \oplus \mathbb{W}$.

Theorem 72 Let \mathbb{W} be the orthogonal complement of \mathbb{V} , that means $\mathbb{W} \perp \mathbb{V} \land \mathbb{H} = \mathbb{V} \oplus \mathbb{W}, \mathbb{H}$: HILBERT space. Then every $\mathbf{u} \in \mathbb{H}$ may be decomposed uniquely into the sum $\mathbf{u} = \mathbf{v} + \mathbf{w}$ of an element $\mathbf{v} \in \mathbb{V}$ and an element $\mathbf{w} \in \mathbb{W}$ such that $(\mathbf{v}, \mathbf{w}) = 0$.

v is called the **orthogonal projection** of **u** onto \mathbb{V} and **w** is called the **orthogonal projection** of **u** onto \mathbb{W} .

The mappings $\mathbf{P} : \mathbb{H} \to \mathbb{V}$ with $\mathbf{Pu} = \mathbf{v}$ and $\mathbf{Q} : \mathbb{H} \to \mathbb{W}$ with $\mathbf{Qu} = \mathbf{w}$ are called **orthogonal projectors** (Orthoprojector) onto \mathbb{V} or onto \mathbb{W} .

Theorem 73 Let \mathbb{U} be a closed subspace of the HILBERT space \mathbb{H} and \mathbf{u} be an arbitrary element of \mathbb{H} .

There exists a unique element $\mathbf{u}_0 \in \mathbb{U}$ with

a)
$$\|\mathbf{u} - \mathbf{u}_0\| = \min_{\mathbf{v} \in \mathbf{U}} \|\mathbf{u} - \mathbf{v}\|$$
 and
b) $(\mathbf{u} - \mathbf{u}_0, \mathbf{v}) = 0$ for $\forall \mathbf{v} \in \mathbb{U}, i.e. \mathbf{u} - \mathbf{u}_0 \in \mathbb{U}^{\perp}.$

 \mathbf{u}_0 is called the **best approximation of** $\mathbf{u} \in \mathbb{H}$ with respect to the subspace \mathbb{U} .

Proof: see literature (Kantorowitsch/Akilow)

3.1 Linear Operators in HILBERT Spaces

Definition 74 Given a linear operator in the HILBERT space \mathbb{H} with the domain $D(\mathbf{A}) \subseteq \mathbb{H}$ and the range \mathbb{H} ; $\overline{D(\mathbf{A})} = \mathbb{H}$. The set

$$D(\mathbf{A}^*) = \{ \mathbf{x} \in \mathbb{H} \mid \exists \mathbf{y} \in \mathbb{H} with \ (\mathbf{A}\mathbf{u}, \mathbf{x}) = (\mathbf{u}, \mathbf{y}) \quad \forall \mathbf{u} \in D(\mathbf{A}) \}$$

is a subset of \mathbb{H} . Then the operator $\mathbf{A}^* : D(\mathbf{A}^*) \subseteq \mathbb{H} \to \mathbb{H}$ with $\mathbf{A}^* \mathbf{x} = \mathbf{y}$ is called the **adjoint operator** (or Hermitian conjugate) of \mathbf{A} . Thus

 $(\mathbf{A}\mathbf{u},\mathbf{x}) = (\mathbf{u},\mathbf{A}^*\mathbf{x}) \text{ for } \forall \mathbf{u} \in D(\mathbf{A}), \forall \mathbf{x} \in D(\mathbf{A}^*).$

Definition 75 Let \mathbb{H} be a HILBERT space. Given the linear operator \mathbf{A} : $D(\mathbf{A}) \subseteq \mathbb{H} \to \mathbb{H}$ with $\overline{D(\mathbf{A})} = \mathbb{H}$. A is called

- symmetric \iff $(\mathbf{A}\mathbf{u}, \mathbf{x}) = (\mathbf{u}, \mathbf{A}\mathbf{x}) \quad \forall \mathbf{u}, \mathbf{x} \in D(\mathbf{A}),$ i.e. $\mathbf{A}^*\mathbf{x} = \mathbf{A}\mathbf{x} \quad \forall \mathbf{x} \in D(\mathbf{A}) \quad \land \quad D(\mathbf{A}) \subseteq D(\mathbf{A}^*)$
- selfadjoint $\iff \mathbf{A} = \mathbf{A}^*$, i.e. $\mathbf{A}^* \mathbf{x} = \mathbf{A} \mathbf{x} \quad \forall \mathbf{x} \in D(\mathbf{A}) = D(\mathbf{A}^*)$

- skew symmetric \iff $(\mathbf{A}\mathbf{u},\mathbf{x}) = -(\mathbf{u},\mathbf{A}\mathbf{x}) \quad \forall \mathbf{u},\mathbf{x} \in D(\mathbf{A})$
- skew adjoint $\iff A = -A^*$

Definition 76 The linear operator $\mathbf{A} : D(\mathbf{A}) \subseteq \mathbb{H} \to \mathbb{H}$ is called **positive** definite, if and only if: $(\mathbf{A}\mathbf{u}, \mathbf{u}) \geq C \|\mathbf{u}\|^2$ for $\forall \mathbf{u} \in D(\mathbf{A})$, $C \in \mathbb{R}$, C > 0

Definition 77 The complex number $\lambda \in \mathbb{C}$ is called the **eigenvalue of the** operator $\mathbf{A} : \mathbb{H} \to \mathbb{H}$, if there exists an element $\mathbf{x} \in \mathbb{H}$, $\mathbf{x} \neq \mathbf{0}$, such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Every $\mathbf{x} \neq \mathbf{0}$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenelement** of the eigenvalue λ .

Definition 78 Operators in a HILBERT space \mathbb{H} over the field \mathbb{K} (\mathbb{R} or \mathbb{C}) which map from \mathbb{H} to \mathbb{K} are called **functionals** or **linear forms**: **f** : $\mathbb{H} \to \mathbb{K}$.

Definition 79 The functional $\mathbf{f} : \mathbb{H} \to \mathbb{K}$ is called:

- linear, if: $\mathbf{f}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}; \ \forall \alpha, \beta \in \mathbb{K}$
- bounded, if: $\exists M \in \mathbb{R}, M > 0 \mid |f(\mathbf{u})| \le M \|\mathbf{u}\| \quad \forall \mathbf{u} \in \mathbb{H}$
- continuous, if: $\lim_{n\to\infty} \mathbf{u}_n = \mathbf{u}$ implies $\lim_{n\to\infty} \mathbf{f}(\mathbf{u}_n) = \mathbf{f}(\mathbf{u})$; $\mathbf{u}_n, \mathbf{u} \in \mathbb{H}$.

Definition 80 Given a linear bounded functional $\mathbf{f} : \mathbb{H} \to \mathbb{K}$. The number

$$\|\mathbf{f}\| = \sup_{\|\mathbf{u}\|=1} |\mathbf{f}(\mathbf{u})|, \quad \mathbf{u} \in \mathbb{H}$$
$$= \inf\{M \in \mathbb{R} \mid |\mathbf{f}(\mathbf{u})| \le M \|\mathbf{u}\| \quad \forall \mathbf{u} \in \mathbb{H}\}$$

is called the norm of the functional.

Theorem 81 The HILBERT space representation theorem (RIESZ) Let \mathbb{H} be a HILBERT space \mathbb{H} over the field \mathbb{K} with the inner product (.,.)and let $\mathbf{f}(\mathbf{x})$ be a continuous linear functional in \mathbb{H} . Then there exists a fixed unique element $\mathbf{u}_0 \in \mathbb{H}$ such that $\mathbf{f}(\mathbf{x}) = (\mathbf{x}, \mathbf{u}_0) \quad \forall \mathbf{x} \in \mathbb{H}$ and $\|\mathbf{f}\| = \|\mathbf{u}_0\|$.

Definition 82 Given a sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ in the HILBERT space \mathbb{H} . If $\lim_{n\to\infty} \mathbf{f}(\mathbf{x}_n) = \mathbf{f}(\mathbf{x})$ for every linear continuous functional \mathbf{f} on \mathbb{H} then $\{\mathbf{x}_n\}_{n=1}^{\infty}$ tends weakly to $\mathbf{x} \in \mathbb{H}$ as n tends to infinity We write: $\mathbf{x}_n \rightharpoonup \mathbf{x}$ **Definition 83** A bilinear form on a HILBERT space \mathbb{H} over the field \mathbb{K} is a bilinear mapping $\mathbf{a} : \mathbb{H} \times \mathbb{H} \to \mathbb{K}$. That means:

$$\begin{aligned} \mathbf{a}(\alpha\mathbf{u} + \beta\mathbf{v}, \mathbf{w}) &= \alpha \mathbf{a}(\mathbf{u}, \mathbf{w}) + \beta \mathbf{a}(\mathbf{v}, \mathbf{w}) \\ \mathbf{a}(\mathbf{w}, \alpha\mathbf{u} + \beta\mathbf{v}) &= \alpha \mathbf{a}(\mathbf{w}, \mathbf{u}) + \beta \mathbf{a}(\mathbf{w}, \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{H}, \ \forall \alpha, \beta \in \mathbb{K}. \end{aligned}$$

Definition 84 The bilinear form $\mathbf{a} : \mathbb{H} \times \mathbb{H} \to \mathbb{K}$ is called

- bounded, if $\exists C > 0$; $C \in \mathbb{R} \mid |\mathbf{a}(\mathbf{u}, \mathbf{v})| \le C \|\mathbf{u}\| \|\mathbf{v}\| \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}$
- symmetric, if $\mathbf{a}(\mathbf{u}, \mathbf{v}) = \mathbf{a}(\mathbf{v}, \mathbf{u}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}$
- positive semidefinite, if $\mathbf{a}(\mathbf{u}, \mathbf{u}) \ge 0 \quad \forall \mathbf{u} \in \mathbb{H}$
- positive definite, if $\mathbf{a}(\mathbf{u}, \mathbf{u}) \ge C \|\mathbf{u}\|^2$ $\forall \mathbf{u} \in \mathbb{H} \land C > 0, \ C = const.$

3.2 The space $\mathbb{L}_2(a, b)$

Elements: measurable functions \mathbf{f} : $(a,b) \to \mathbb{C}$, with $(L) \int_{a}^{b} |\mathbf{f}(t)|^{2} dt < \infty$

These functions are called square-integrable.

Arithmetic operations: $\mathbf{f}(t) + \mathbf{g}(t)$ and. $\lambda \mathbf{f}(t), \lambda \in \mathbb{C}$ are calculated pointwise

Inner product/Norm:
$$(\mathbf{f}, \mathbf{g}) = (L) \int_{a}^{b} \mathbf{f}(t) \overline{\mathbf{g}(t)} dt$$
, $\|\mathbf{f}\|^{2} = (L) \int_{a}^{b} |\mathbf{f}(t)|^{2} dt$

SCHWARTZ's inequality: $|(\mathbf{f}, \mathbf{g})| \le \|\mathbf{f}\| \|\mathbf{g}\|$, i.e.

$$\left| (L) \int_{a}^{b} \mathbf{f}(t) \overline{\mathbf{g}(t)} dt \right|^{2} \leq \left((L) \int_{a}^{b} |\mathbf{f}(t)|^{2} dt \right) \cdot \left((L) \int_{a}^{b} |\mathbf{g}(t)|^{2} dt \right)$$

Basis systems:

- **A)** LEGENDRE polynomials
- **B)** ONS with trigonometric functions
- C) (a,b) = (0,T): complete ONS:

$$\varphi_k(t) = \frac{1}{\sqrt{T}} \exp(ik\omega t)$$
 $k = 0, \pm 1, \pm 2, \dots$ $\omega = \frac{2\pi}{T}$

Properties:

- The space $\mathbb{L}_2(a, b)$ is infinite-dimensional.
- $\mathbb{L}_2(a, b)$ is complete and separable.
- The elements of $\mathbb{L}_2(a, b)$ are classes of functions. $\mathbf{f}_1(t)$ and $\mathbf{f}_2(t)$ belong to the same class if $\mathbf{f}_1(t) = \mathbf{f}_2(t)$ almost everywhere over (a, b), i.e. if

$$\mathbf{f}_1(t) \neq \mathbf{f}_2(t)$$
 on a set of measure zero or $(L) \int_a |\mathbf{f}_1(t) - \mathbf{f}_2(t)| dt = 0$

Definition 85 $L_2(\mathbb{R}/2\pi) = \{f : \mathbb{R} \to \mathbb{C} \mid f(t) \text{ is measurable, } f(t+2\pi) = f(t) \ \forall t \in \mathbb{R}, \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt < \infty \}$