Basics of Functional Analysis

1 Metric Spaces

Definition 1 A metric space \mathbb{X} is defined to be a nonempty set \mathbb{X} together with a real function $d, \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$, satisfying 3 conditions:

1. $d(\mathbf{x}, \mathbf{y}) \geq 0, \quad \wedge \quad d(\mathbf{x}, \mathbf{y})=0 \Longleftrightarrow \mathbf{x}=\mathbf{y}$
(nonnegativity, nondegeneracy)
2. $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{X} \quad$ (symmetry)
3. $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{X} \quad$ (triangle inequality)
$d(\mathbf{x}, \mathbf{y})$ is called the distance function or the Metric in \mathbb{X}.

Definition 2 Let (\mathbb{X}, d) be a metric space, $\mathbf{x}_{0} \in \mathbb{X}$;
The set $K_{\varepsilon}\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x} \in \mathbb{X} \mid d\left(\mathbf{x}, \mathbf{x}_{0}\right)<\varepsilon\right\}$ is called an open ball centered at \mathbf{x}_{0} with the radius ε, or is called the $\varepsilon-$ neighbourhood of \mathbf{x}_{0}.

Definition 3 The proper subset $A \subset \mathbb{X}$ is called open, if $\forall \mathbf{x} \in A \quad \exists r>0 \mid K_{r}(\mathbf{x}) \subseteq A$.

Definition 4 The proper subset $U \subset \mathbb{X}$ is called the neighbourhood of \mathbf{x}_{0}, if it contains an ε-neighbourhood of \mathbf{x}_{0}.

Definition $5 \mathbf{x}_{0}$ is an interior point of $A \Longleftrightarrow \exists \varepsilon>0 \mid K_{\varepsilon}\left(\mathbf{x}_{0}\right) \subset A$
Definition 6 The proper subset $A \subset \mathbb{X}$ is called bounded, if A is completely contained within an open ball $K_{r}(\mathbf{y}), \mathbf{y} \in \mathbb{X}, 0<r<\infty$.

Definition $\mathbf{7}$ The point $\mathbf{x}_{0} \in \mathbb{X}$ is a limit point of a set $A \subset \mathbb{X}$, if every open ball centered at \mathbf{x}_{0} contains a point $\mathbf{x} \in A ; \quad \mathbf{x} \neq \mathbf{x}_{0}$. The set of all limit points of A is called the derivated set A^{+}.

Definition 8 The set $\bar{A}=A \cup A^{+}$is called the closure or the closed cover of A.

Definition 9 The subset $A \subset X$ is called closed, if $A^{+} \subseteq A$.
Definition 10 The set B is called dense in A, if $B \subset A \wedge \bar{B}=A$.

Definition $11 A$ sequence $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty} \subset \mathbb{X}$ is called convergent, if there exists an element $\mathbf{x}_{0} \in \mathbb{X}$ fulfilling the condition $\lim _{n \rightarrow \infty} d\left(\mathbf{x}_{n}, \mathbf{x}_{0}\right)=0 . \mathbf{x}_{0}$ is called the limit of the sequence.

Definition 12 Cauchy sequence
A sequence $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty} \subset \mathbb{X}$ is said to be Cauchy, if given any $\varepsilon>0$ there exists an integer $n_{0}(\varepsilon)$ such that $d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)<\varepsilon$ whenever $n, m>n_{0}(\varepsilon)$,
i.e. $\lim _{n, m \rightarrow \infty} d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=0$.

Definition 13 A metric space \mathbb{X} is complete, if every Cauchy sequence in \mathbb{X} converges to a point of \mathbb{X}.

Definition 14 Let (\mathbb{X}, d) be a metric space. Subset $A \subset \mathbb{X}$ is called sequentially compact, if every sequence $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty} \subset A$ contains a convergent subsequence $\left\{\widetilde{\mathbf{x}}_{n}\right\}_{n=1}^{\infty} \subset A$ with $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x} \in \mathbb{X}$.

Definition 15 The subset $A \subset \mathbb{X}$ is called compact, if every sequence $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty} \subset A$ contains a convergent subsequence $\left\{\widetilde{\mathbf{x}}_{n}\right\}_{n=1}^{\infty} \subset A$ with $\lim _{n \rightarrow \infty} \widetilde{\mathbf{x}}_{n}=\mathbf{x} \in A$.

Notation $16 A \subset \mathbb{X}$ is compact $\Longleftrightarrow A \subset \mathbb{X}$ is sequentially compact and closed.

1.1 Operators

Definition 17 A unique mapping from A to $B, T: A \rightarrow B$ is called an operator: $T \mathbf{x}=\mathbf{y}$

Definition 18 The range of T is the set
$T(A)=\{\mathbf{y} \in B \mid \exists \mathbf{x} \in A$ with $T(\mathbf{x})=\mathbf{y}\}$.
Definition 19 The operator $T: A \rightarrow B$ is called

- surjective (onto) $\Longleftrightarrow T(A)=B$
- injective (one-to-one) $\Longleftrightarrow T(x)=T(y) \quad \curvearrowright \quad x=y$
- bijective $\Longleftrightarrow T$ is surjective and injective.

Definition 20 If the operator $T: A \rightarrow B$ is bijective, then there exists the inverse operator $T^{-1}: B \rightarrow A$, which is defined by $T^{-1} \mathbf{y}=\mathbf{x} \Longleftrightarrow$ $T \mathbf{x}=\mathbf{y}$.

Definition 21 The operator $T: A \rightarrow B$ is called continuous at $\mathbf{x}_{0} \in A$, if $\forall \varepsilon>0 \quad \exists \delta=\delta\left(x_{0}, \varepsilon\right) \quad \mid \quad d_{y}\left(T \mathbf{x}, T \mathbf{x}_{0}\right)<\varepsilon \quad \forall \mathbf{x} \in A$ with $d_{x}\left(\mathbf{x}, \mathbf{x}_{0}\right)<\delta$. If T is continuous at every point $\mathbf{x}_{0} \in A$, then T is called continuous on A. In Addition, if $\delta\left(x_{0}, \varepsilon\right)$ is independent of x_{0} for all ε then T is called uniformly continuous on A.

Definition 22 bijective continuous mapping $T: A \rightarrow B$, with a continuous inverse mapping is called a homeomorphism. Two set are called homeomorph $\Leftrightarrow \exists$ homeomorphism $T: A \rightarrow B$.

Definition 23 Let A be closed. The mapping $T: A \rightarrow A$ is called a contraction mapping, if there exists a number $0<q<1$ such that $d(T \mathbf{x}, T \mathbf{y}) \leq q \cdot d(\mathbf{x}, \mathbf{y}) \forall \mathbf{x}, \mathbf{y} \in A$.

Theorem 24 BANACH Fixed Point Theorem (FPT)

Let A be a closed subset of the complete metric space (\mathbb{X}, d) with a contraction mapping $T: A \rightarrow A$. Then T admits a unique fixed-point $\mathbf{x}^{*} \in A$, i.e. \mathbf{x}^{*} is the solution of the fixed point equation $\mathbf{x}=T \mathbf{x}$.
Then the iterative sequence $\left\{\mathbf{x}_{n}\right\}_{n=0}^{\infty}$ which starts with an arbitrary element $\mathbf{x}_{0} \in A$, defined by $x_{n+1}=T \mathbf{x}_{n}$, tends to \mathbf{x}^{*} as n tends to infinity. The following inequalities are true and describe the speed of convergence:

- a priori : $d\left(\mathbf{x}_{n}, \mathbf{x}^{*}\right) \leq \frac{q^{n}}{1-q} d\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)$
- a posteriori : $d\left(\mathbf{x}_{n}, \mathbf{x}^{*}\right) \leq \frac{q}{1-q} d\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}\right)$.

2 Linear Spaces

Definition 25 A vector space over a field $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C})$ is a nonempty set \mathbb{X} together with two binary operations that satisfy the eight axioms listed below. (Elements of \mathbb{X} are called vectors. Elements of \mathbb{K} are called scalars.)
(A) The first operation, addition, takes any two elements $\mathbf{x} \in \mathbb{X}, \mathbf{y} \in \mathbb{X}$ and assigns to them a third, unique element which is commonly written as $\mathbf{x}+\mathbf{y} \in \mathbb{X}$ and called the sum of these two elements.
(M) The second operation takes any scalar $\lambda \in \mathbb{K}$ and any vector $\mathbf{x} \in \mathbb{X}$ and gives another unique element $\lambda \mathbf{x} \in \mathbb{X}$. The multiplication is called the scalar multiplication of \mathbf{x} by λ.

To qualify as a vector space, the set \mathbb{X} and the operations of addition and scalar multiplication must adhere to a number of requirements called the Axioms of the linear space.
Let \mathbf{x}, \mathbf{y} and \mathbf{z} be arbitrary vectors in \mathbb{X}, and λ and μ be scalars in \mathbb{K}.
(A1) $\mathrm{x}+(\mathrm{y}+\mathrm{z})=(\mathrm{x}+\mathrm{y})+\mathrm{z} \quad$ (Associativity of addition)
(A2) $\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x} \quad$ (Commutativity of addition)
(A3) There exists a unique element $\mathbb{O} \in \mathbb{X}$, such that $\mathbf{x}+\mathbb{O}=\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{X}$ (zero/identity element of addition)
(A4) For every $\mathrm{x} \in \mathbb{X}$, there exists a unique element $(-\mathbf{x}) \in \mathbb{X}$ such that $\mathbf{x}+(-\mathbf{x})=\mathbb{O}$
(Inverse element of addition)
(M1) $(\lambda+\mu) \mathbf{x}=\lambda \mathbf{x}+\mu \mathbf{x} \quad$ (Distributivity of scalar multiplication with respect to field addition)
(M2) $\lambda(\mathbf{x}+\mathbf{y})=\lambda \mathbf{x}+\lambda \mathbf{y} \quad$ (Distributivity of scalar multiplication with respect to vector addition)
(M3) $(\lambda \mu) \mathbf{x}=\lambda(\mu \mathbf{x}) \quad$ (Compatibility of scalar multiplication with field multiplication)
(M4) $1 \mathrm{x}=\mathrm{x} ; \quad(1 \in \mathbb{K}$, Identity element of scalar multiplication)

Notation 26 If $\mathbb{K}=\mathbb{R} \quad(\mathbb{K}=\mathbb{C}$) then we get a real (complex) linear space.
Definition 27 Let \mathbb{U} be a subset of \mathbb{X}. Then \mathbb{U} is a subspace if and ony if it satisfies the following conditions:
a) If \mathbf{x} and \mathbf{y} are elements of \mathbb{X}, then the sum $\mathbf{x}+\mathbf{y}$ is an element of \mathbb{U}
b) If \mathbf{x} is an element of \mathbb{U} and λ is a scalar from \mathbb{K}, then the scalar product $\lambda \mathbf{x}$ is an element of \mathbb{U}

Definition 28 Let \mathbb{U} be a subspace of \mathbb{X} and $x_{0} \in \mathbb{X}$ then

$$
M=\left\{\mathbf{x}_{0}+\mathbf{y} \mid \mathbf{y} \in \mathbb{U}\right\} \equiv \mathbf{x}_{0}+\mathbb{U}
$$

is called linear manifold in \mathbb{X}.

Definition 29 Let A be a subset $A \subset \mathbb{X}$. The set of all finite linear combinations of elements of A

$$
\operatorname{span} A=\left\{\sum_{k=1}^{m} \lambda_{k} \mathbf{x}_{k} \quad \mid \quad \mathbf{x}_{k} \in A, \quad \lambda_{k} \in \mathbb{K}, \quad m \in \mathbb{N}\right\}
$$

is called the linear span of A
Definition 30 Let \mathbb{U} and \mathbb{V} be subspaces of \mathbb{X}, then

$$
\mathbb{U}+\mathbb{V}=\operatorname{span}(U \cup V)
$$

is called the sum of \mathbb{U} and \mathbb{V}. Additionally, if $\mathbb{U} \cap \mathbb{V}=\{\mathbb{O}\}$,
then $\mathbb{U}+\mathbb{V}$ is called the direct sum $\mathbb{U} \oplus \mathbb{V}$. Every $\mathbf{z} \in \mathbb{U} \oplus \mathbb{V}$ has a unique representation in the form $\mathbf{z}=\mathbf{x}+\mathbf{y}$ with $\mathbf{x} \in \mathbb{U}$ and $\mathbf{y} \in \mathbb{V}$.

Definition 31 If $\mathbb{X}=\mathbb{U} \oplus \mathbb{V}$, then the subspaces $\mathbb{U} \subset \mathbb{X}$ and $\mathbb{V} \subset \mathbb{X}$ are called complementary.

Definition 32 The set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{X}$ is called linearly independent, if

$$
\sum_{k=1}^{m} \lambda_{k} \mathbf{x}_{k}=\mathbf{0} \Longleftrightarrow \lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=0
$$

Definition 33 The set $B \subset \mathbb{X}$ is called linearly independent, if every finite subset of B is linearly independent.

Definition $34 A$ linearly independent subset $B \subset \mathbb{X}$ with $\mathbb{X}=\overline{\operatorname{spanB}}$ is called a basis in \mathbb{X}.

Definition 35 If there exists a basis of \mathbb{X} with $|B|=n$, then every basis of \mathbb{X} consists of n elements: $\operatorname{dim} \mathbb{X}=n$. If there is no finite n then \mathbb{X} is called infinitely dimensional.

Definition 36 Let \mathbb{X} and \mathbb{Y} be linear spaces over \mathbb{K}. \mathbb{X} and \mathbb{Y} are said to be linear isomorph, if there exists a bijection $f: \mathbb{X} \rightarrow \mathbb{Y}$ with the property

$$
f(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha f(\mathbf{x})+\beta f(\mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{X} ; \quad \alpha, \beta \in \mathbb{K}
$$

2.1 Normed Linear Spaces

Definition 37 A (real) normed linear space $(\mathbb{V},\|\|$.$) is a (real) linear$ space \mathbb{V} over the field \mathbb{K} together with a function $\|\|,. \mathbb{V} \rightarrow \mathbb{R}$, called the norm, satisfying the following 3 conditions for any $\mathbf{x}, \mathbf{y} \in \mathbb{V}$:
(I) $\|\mathbf{x}\| \geq 0 \quad \wedge \quad\|\mathrm{x}\|=0 \quad \Longleftrightarrow \quad \mathbf{x}=\mathbf{0}$
(nonnegativity and nondegeneracy)
(II) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|, \quad \alpha \in \mathbb{K} \quad$ (multiplicativity)
(III) $\|\mathrm{x}+\mathbf{y}\| \leq\|\mathrm{x}\|+\|\mathrm{y}\| \quad$ (triangle inequality)
$\|\mathbf{x}\|$ is called the norm of the element \mathbf{x}.

Notation 38 In any linear normed space \mathbb{V} you can introduce the canonical or induced metric by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{V}$. Therefore every linear normed space is a metric space.

Definition 39 A linear normed vector space \mathbb{V} over the field \mathbb{K} which is complete with respect to the metric $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, induced by the norm, is called a BANACH space.

Definition 40 The set $K_{r}\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x} \in \mathbb{B} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<r\right\}$ is called an open ball centered at $\mathrm{x}_{0} \in B$ with the radius r.

Convergence in the BANACH space \mathbb{B} :

- Let $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathbb{B}.
$\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x}_{0} \quad \Longleftrightarrow \quad \forall \varepsilon>0 \exists n_{0}(\varepsilon) \mid\left\|\mathbf{x}_{n}-\mathbf{x}_{0}\right\|<\varepsilon \quad \forall n \geq n_{0}$
- $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ is Cauchy in \mathbb{B}, if
$\forall \varepsilon>0 \exists n_{0}(\varepsilon) \mid\left\|\mathbf{x}_{n}-\mathbf{x}_{m}\right\|<\varepsilon \quad \forall n, m \geq n_{0}$
- Because of the completeness of the BANACH space, every Cauchy sequence tends to a limit in the BANACH space.
- Convergence in normed spaces is called norm convergence.
- The set of all norm convergent sequences is linear:
$\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x} \wedge \lim _{n \rightarrow \infty} \mathbf{y}_{n}=\mathbf{y}$ implies $\lim _{n \rightarrow \infty}\left(\mathbf{x}_{n}+\mathbf{y}_{n}\right)=\mathbf{x}+\mathbf{y}$.
$\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x} \wedge \lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ implies $\lim _{n \rightarrow \infty} \alpha_{n} \mathbf{x}_{n}=\alpha \mathbf{x}$.
$\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x}$ implies $\lim _{n \rightarrow \infty}\left\|\mathbf{x}_{n}\right\|=\|\mathbf{x}\|$.

Definition 41 In a normed space \mathbb{V} the norms $\|\cdot\|_{1}$ and $\|.\|_{2}$ are said to be equivalent if $\exists m, M \in \mathbb{R}, m>0, M>0 \mid m\|\mathbf{x}\|_{1} \leq\|\mathbf{x}\|_{2} \leq M\|\mathbf{x}\|_{1} \forall \mathbf{x} \in \mathbb{V}$.

Definition 42 Series in Normed Spaces:

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}, \ldots$ be elements of a linear normed space $\mathbb{V}, \mathbf{s}_{n}=\sum_{k=1}^{n} \mathbf{x}_{k}$.
By definition the series $\sum_{k=1}^{\infty} \mathbf{x}_{k}$ converges to a limit $\mathbf{s} \in \mathbb{V}$ if and only if the associated sequence of partial sums $\left\{\mathbf{s}_{n}\right\}$ converges to \mathbf{s} i.e..

$$
\mathbf{s}=\sum_{k=1}^{\infty} \mathbf{x}_{k} \Longleftrightarrow \lim _{n \rightarrow \infty} \mathbf{s}_{n}=\mathbf{s}
$$

$\mathbf{s}=\sum_{k=1}^{\infty} \mathbf{x}_{k}$ is called the sum of the series in \mathbb{V}.
Definition 43 The series $\sum_{k=1}^{\infty} \mathbf{x}_{k}$ is called absolutely convergent, if the number series $\sum_{k=1}^{\infty}\left\|\mathbf{x}_{k}\right\|$ is convergent.

2.2 Linear Operators

Definition 44 Let \mathbb{X}, \mathbb{Y} be linear normed spaces over the (same) field \mathbb{K}. A mapping $\mathbf{A}: \mathbb{X} \rightarrow \mathbb{Y}$ is called a linear operator, if:

$$
\begin{aligned}
\mathbf{A}(\mathbf{u}+\mathbf{v}) & =\mathbf{A u}+\mathbf{A v} \mathbf{v} & & \forall \mathbf{u}, \mathbf{v} \in \mathbb{X} \\
\mathbf{A}(\alpha \mathbf{u}) & =\alpha A \mathbf{u} & & \forall \alpha \in \mathbb{K} \wedge \forall \mathbf{u} \in \mathbb{X} .
\end{aligned}
$$

Image space of $\boldsymbol{A}: \quad R(\mathbf{A})=\{\mathbf{y} \in \mathbb{Y} \mid \mathbf{y}=\mathbf{A x} ; \mathbf{x} \in \mathbb{X}\}$
Null space (kernel) of $\mathbf{A}: N(\mathbf{A})=\{\mathbf{x} \in \mathbb{X} \mid \mathbf{A x}=\mathbf{0}\}$
Definition 45 the linear operator $\mathbf{A}: \mathbb{X} \rightarrow \mathbb{Y}$ is called bounded if there exists some finite positive constant $C \in \mathbb{R}$ such that $\|\mathbf{A} \mathbf{x}\| \leq C\|\mathbf{x}\| \quad \forall \mathbf{x} \in \mathbb{X}$.

Definition 46 The number

$$
\begin{aligned}
\|\mathbf{A}\| & =\inf \{C \in \mathbb{R} \mid\|\mathbf{A} \mathbf{u}\| \leq C\|\mathbf{u}\|, \forall \mathbf{u} \in \mathbb{X}\} \\
& =\sup _{\|\mathbf{u}\|=1}\|\mathbf{A} \mathbf{u}\|
\end{aligned}
$$

is called the norm of the operator.

Theorem 47 The linear operator $\mathbf{A}: \mathbb{X} \rightarrow \mathbb{Y}$ is continuous if and only if it is bounded.

Definition 48 A linear continuous operator $\mathbf{A}: \mathbb{X} \rightarrow \mathbb{Y}$ is called an isomorphism if it is bijective and if \mathbf{A}^{-1} is continuous. That means: An isomorphism is a linear homeomorphism. Moreover if $\|\mathbf{A} \mathbf{x}\|=\|\mathbf{x}\| \forall \mathbf{x} \in \mathbb{X}$ is satisfied then \mathbf{A} is called isometric. Normed spaces which are connected by an (isometric) isomophism are called (isometricly) isomorph.

Definition 49 The sum $\mathbf{T}+\mathbf{S}$ of the linear operators \mathbf{T} and \mathbf{S} is defined by the equation $(\mathbf{T}+\mathbf{S}) \mathbf{x}=\mathbf{T x}+\mathbf{S x} \quad \forall \mathbf{x} \in \mathbb{X}$, the product of the operators \mathbf{T} by $\lambda \in \mathbb{R}$ or $\lambda \in \mathbb{C}$ is defined by $(\lambda \mathbf{T}) \mathbf{x}=\lambda(\mathbf{T} \mathbf{x}) \quad \forall \mathbf{x} \in \mathbb{X}$.

Definition 50 The collection $\mathbb{L}(\mathbb{X}, \mathbb{Y})$ of all linear bounded operators
$\mathbf{A}: \mathbb{X} \rightarrow \mathbb{Y}$ with the sum and the product defined above is called the space of the linear bounded operators $\mathbb{L}(\mathbb{X}, \mathbb{Y})$ or the dual space \mathbb{X}^{\prime} of \mathbb{X}.

Definition 51 The sequence $\left\{\mathbf{A}_{n}\right\}_{n=1}^{\infty} \subset \mathbb{L}(\mathbb{X}, \mathbb{Y})$ is called norm convergent (strongly convergent) with the limit $\mathbf{A} \in \mathbb{L}(\mathbb{X}, \mathbb{Y})$ if $\lim _{n \rightarrow \infty}\left\|\mathbf{A}_{n} \mathbf{x}-\mathbf{A x}\right\|=0 \quad \forall \mathbf{x} \in \mathbb{X}$ is satisfied.
We write: $\mathbf{A}_{n} \xrightarrow{n \rightarrow \infty} \mathbf{A}$ or $\lim _{n \rightarrow \infty} \mathbf{A}_{n}=\mathbf{A}$.
Definition 52 Let $\mathbb{X}, \mathbb{Y}, \mathbb{Z}$ be linear spaces and let $\mathbf{T}: \mathbb{X} \rightarrow \mathbb{Y} ; \quad \mathbf{S}: \mathbb{Y} \rightarrow \mathbb{Z}$ be linear operators. Then the product ST of the operators is defined by $(\mathbf{S T}) \mathbf{x}=\mathbf{S}(\mathbf{T x}) \quad \forall \mathbf{x} \in \mathbb{X}$.

Definition 53 Let $\mathbf{T}: \mathbb{X} \rightarrow \mathbb{Y}$ be a linear operator. If there exists a linear operator $\mathbf{S}: \mathbb{Y} \rightarrow \mathbb{X}$ such that :
$\mathbf{S T}=\mathbf{I}_{x} \wedge \mathbf{T S}=\mathbf{I}_{y} ;$ with $\mathbf{I}_{x}, \mathbf{I}_{y}$ identity maps from \mathbb{X} to \mathbb{X} or \mathbb{Y} to \mathbb{Y} then \mathbf{S} is the inverse Operator to: $\mathbf{T} \mathbf{S}=\mathbf{T}^{-1}$.
The collection of all invertible operators $T \in \mathbb{L}(\mathbb{X}, \mathbb{Y})$ is called $\mathbb{L}_{\text {inv }}(\mathbb{X}, \mathbb{Y})$.

3 HILBERT Spaces

Definition 54 An inner product space ($\mathbb{H},(.,)$.$) or pre-HILBERT space is$ a linear space \mathbb{H} over the field \mathbb{K} together with a function (., .) : $\mathbb{H} \times \mathbb{H} \rightarrow \mathbb{K}$, which satisfies the following conditions:

1. $(\mathbf{x}, \mathbf{x}) \geq 0 \wedge \quad(\mathbf{x}, \mathbf{x})=0 \Leftrightarrow \mathbf{x}=\mathbf{0} \quad$ (nonnegativity and nondegeneracy)
2. $(\mathbf{x}, \mathbf{y})=\overline{(\mathbf{y}, \mathbf{x})}$ (Hermitian symmetry)
3. $(\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z})=\alpha(\mathbf{x}, \mathbf{z})+\beta(\mathbf{y}, \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{H} ; \alpha, \beta \in \mathbb{K} \quad$ (linearity in the first argument).

Definition 55 Let \mathbb{H} be a linear space over the field \mathbb{K}. The function (.,.) : $\mathbb{H} \times \mathbb{H} \rightarrow \mathbb{K}$ with the properties 1 , 2, 3 is called the inner product.

Theorem 56 Every pre-HILBERT space is a normed space with the norm $\|\mathbf{x}\|=\sqrt{(\mathbf{x}, \mathbf{x})} \quad \forall \mathrm{x} \in \mathbb{H}$

Properties of the inner product:

1. $(\mathbf{u}, \alpha \mathbf{v})=\bar{\alpha}(\mathbf{u}, \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}, \alpha \in \mathbb{K}$
2. $(\mathbf{u}, \mathbf{v}+\mathbf{w})=(\mathbf{u}, \mathbf{v})+(\mathbf{u}, \mathbf{w}) \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{H}$
3. $|(\mathbf{u}, \mathbf{v})| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\| \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H} \quad$ SCHWARZ's Inequality

Theorem 57 The inner product in a pre-HILBERT space is continuous, i.e. $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{x}$ and $\lim _{n \rightarrow \infty} \mathbf{y}_{n}=\mathbf{y}$ imply $\lim _{n \rightarrow \infty}\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)=(\mathbf{x}, \mathbf{y})$.

Definition 58 A HILBERT space is a complete pre-HILBERT space with respect to the metric $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, induced by the norm $\|\mathbf{x}\|=\sqrt{(\mathbf{x}, \mathbf{x})}$.

Definition 59 Let \mathbb{H} be a HILBERT space. The two elements $\mathbf{u}, \mathbf{v} \in \mathbb{H}$ are orthogonal $(\mathbf{u} \perp \mathbf{v})$, if $(\mathbf{u}, \mathbf{v})=0$.

Definition 60 Let \mathbb{H} be a HILBERT space. A system $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$ is called an orthonormal system (ONS) if $\left(\mathbf{e}_{i}, \mathbf{e}_{k}\right)=\delta_{i k}=\left\{\begin{array}{ll}1 & i=k \\ 0 & i \neq k\end{array}\right.$.
The ONS is called closed or complete, if $\overline{\operatorname{span}_{i}\left\{\mathbf{e}_{i}\right\}}=\mathbb{H}$.
Conclusion $61 \forall \mathbf{u} \in \mathbb{H}, \forall \varepsilon>0 \quad \exists u_{i} \in \mathbb{R} \wedge \exists n_{0}(\varepsilon) \mid$

$$
\left\|\mathbf{u}-\sum_{i=1}^{n} u_{i} \mathbf{e}_{i}\right\|<\varepsilon \quad \forall n>n_{0}
$$

Definition 62 A HILBERT space \mathbb{H} is called separable, if \mathbb{H} has a countable subset $M=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots\right\}$ which is dense in \mathbb{H}, i.e. $\bar{M}=\mathbb{H}$.

Theorem 63 In a separable HILBERT space \mathbb{H}, there exists at least one complete ONS (and the contrary is true, too).

Theorem 64 Let \mathbb{H} be a separable HILBERT space with the ONS $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$, $\mathbf{u} \in \mathbb{H}, \mathbf{s}_{n}=\sum_{i=1}^{n} \gamma_{i} \mathbf{e}_{i} ; \gamma_{i} \in \mathbb{C}$. Then we get:

- $\left\|\mathbf{u}-\mathbf{s}_{n}\right\|$ is minimal for $\gamma_{i}=u_{i}=\left(\mathbf{u}, \mathbf{e}_{i}\right) \quad \forall i$
- $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} u_{i} \mathbf{e}_{i}=\mathbf{s} \in \mathbb{H}$
- The series $\sum_{i=1}^{\infty}\left|u_{i}\right|^{2}$ converges and BESSEL's Inequality $\sum_{i=1}^{\infty}\left|u_{i}\right|^{2} \leq\|\mathbf{u}\|^{2}$ is satisfied.
- If the ONS $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$ is closed, then $\mathbf{s}=\mathbf{u}$ and we get PARSEVAL's equation: $\sum_{i=1}^{\infty}\left|u_{i}\right|^{2}=\|\mathbf{u}\|^{2}$

Theorem 65 RIESZ - FISCHER

Let $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$ be an ONS in the HILBERT space \mathbb{H} and $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ be a number series with
$\sum_{i=1}^{\infty}\left|\gamma_{i}\right|^{2}<\infty \quad \Longrightarrow \quad \exists \mathbf{v} \in \mathbb{H} \mid\left(\mathbf{v}, \mathbf{e}_{i}\right)=\gamma_{i} \quad \forall i \quad \wedge \quad \mathbf{v}=\sum_{i=1}^{\infty} \gamma_{i} \mathbf{e}_{i}$. If $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$ is closed in \mathbb{H}, then \mathbf{v} is well defined.

Definition 66 Let \mathbb{H} be a HILBERT space with the ONS $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}, \mathbf{u} \in \mathbb{H}$. The series $\sum_{i=1}^{\infty}\left(\mathbf{u}, \mathbf{e}_{i}\right) \mathbf{e}_{i}$ is called the FOURIER series of \mathbf{u} with respect to the ONS $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$,
the numbers $u_{i}=\left(\mathbf{u}, \mathbf{e}_{i}\right)$ are called FOURIER coefficients.
Definition 67 The HILBERT spaces $\mathbb{H}_{1}, \mathbb{H}_{2}$ are called isometric, if there exists a unique mapping $f: \mathbb{H}_{1} \rightarrow \mathbb{H}_{2}$ with:

- $f(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha f(\mathbf{u})+\beta f(\mathbf{v})$
- $(\mathbf{u}, \mathbf{v})=(f(\mathbf{u}), f(\mathbf{v})) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}_{1}, \forall \alpha, \beta \in \mathbb{C}$

Definition 68 The proper subspaces $M_{1} \subset \mathbb{H}$ and $M_{2} \subset \mathbb{H}$ of a HILBERT space \mathbb{H} are called orthogonal if and only if the inner product $(\mathbf{u}, \mathbf{v})=0 \quad \forall \mathbf{u} \in M_{1}, \forall \mathbf{v} \in M_{2}$.

Definition 69 For any subset M of \mathbb{H} the set $M^{\perp}=\{\mathbf{v} \in \mathbb{H} \mid \quad(\mathbf{u}, \mathbf{v})=0 \quad \forall \mathbf{u} \in M\}$ is called the orthogonal space with respect to M.

Definition 70 Let \mathbb{V}, $\mathbb{W} \subset \mathbb{H}$ be closed subspaces of the HILBERT space \mathbb{H}. If every $\mathbf{u} \in \mathbb{H}$ is uniquely described as the sum $\mathbf{u}=\mathbf{v}+\mathbf{w}$ with $\mathbf{v} \in \mathbb{V}$ and $\mathbf{w} \in \mathbb{W}$ then \mathbb{H} is called the direct sum of the subspaces \mathbb{V} and \mathbb{W} : $\mathbb{H}=\mathbb{V} \oplus \mathbb{W}$.

Definition $71 \mathbb{W} \subset \mathbb{H}$ is called an orthogonal complement of the closed subspace $\mathbb{V} \subset \mathbb{H}$ if and only if $\mathbb{W} \perp \mathbb{V} \wedge \mathbb{H}=\mathbb{V} \oplus \mathbb{W}$.

Theorem 72 Let \mathbb{W} be the orthogonal complement of \mathbb{V}, that means $\mathbb{W} \perp \mathbb{V} \wedge \mathbb{H}=\mathbb{V} \oplus \mathbb{W}, \mathbb{H}$: HILBERT space. Then every $\mathbf{u} \in \mathbb{H}$ may be decomposed uniquely into the sum $\mathbf{u}=\mathbf{v}+\mathbf{w}$ of an element $\mathbf{v} \in \mathbb{V}$ and an element $\mathbf{w} \in \mathbb{W}$ such that $(\mathbf{v}, \mathbf{w})=0$.
\mathbf{v} is called the orthogonal projection of \mathbf{u} onto \mathbb{V} and \mathbf{w} is called the orthogonal projection of \mathbf{u} onto \mathbb{W}.
The mappings $\mathbf{P}: \mathbb{H} \rightarrow \mathbb{V}$ with $\mathbf{P u}=\mathbf{v}$ and $\mathbf{Q}: \mathbb{H} \rightarrow \mathbb{W}$ with $\mathbf{Q u}=\mathbf{w}$ are called orthogonal projectors (Orthoprojector) onto \mathbb{V} or onto \mathbb{W}.

Theorem 73 Let \mathbb{U} be a closed subspace of the HILBERT space \mathbb{H} and \mathbf{u} be an arbitrary element of \mathbb{H}.
There exists a unique element $\mathbf{u}_{0} \in \mathbb{U}$ with
a) $\left\|\mathbf{u}-\mathbf{u}_{0}\right\|=\min _{\mathbf{v} \in \mathbf{U}}\|\mathbf{u}-\mathbf{v}\|$ and
b) $\left(\mathbf{u}-\mathbf{u}_{0}, \mathbf{v}\right)=0 \quad$ for $\quad \forall \mathbf{v} \in \mathbb{U}$, i.e. $\mathbf{u}-\mathbf{u}_{0} \in \mathbb{U}^{\perp}$.
\mathbf{u}_{0} is called the best approximation of $\mathbf{u} \in \mathbb{H}$ with respect to the subspace \mathbb{U}.
Proof: see literature (Kantorowitsch/Akilow)

3.1 Linear Operators in HILBERT Spaces

Definition 74 Given a linear operator in the HILBERT space \mathbb{H} with the domain $D(\mathbf{A}) \subseteq \mathbb{H}$ and the range $\mathbb{H} ; \overline{D(\mathbf{A})}=\mathbb{H}$. The set

$$
D\left(\mathbf{A}^{*}\right)=\{\mathbf{x} \in \mathbb{H} \mid \quad \exists \mathbf{y} \in \mathbb{H} \text { with }(\mathbf{A} \mathbf{u}, \mathbf{x})=(\mathbf{u}, \mathbf{y}) \quad \forall \mathbf{u} \in D(\mathbf{A})\}
$$

is a subset of \mathbb{H}. Then the operator $\mathbf{A}^{*}: D\left(\mathbf{A}^{*}\right) \subseteq \mathbb{H} \rightarrow \mathbb{H} \quad$ with $\mathbf{A}^{*} \mathbf{x}=\mathbf{y}$ is called the adjoint operator (or Hermitian conjugate) of \mathbf{A}. Thus

$$
(\mathbf{A} \mathbf{u}, \mathbf{x})=\left(\mathbf{u}, \mathbf{A}^{*} \mathbf{x}\right) \text { for } \forall \mathbf{u} \in D(\mathbf{A}), \forall \mathbf{x} \in D\left(\mathbf{A}^{*}\right)
$$

Definition 75 Let \mathbb{H} be a HILBERT space. Given the linear operator A : $D(\mathbf{A}) \subseteq \mathbb{H} \rightarrow \mathbb{H}$ with $\overline{D(\mathbf{A})}=\mathbb{H}$. \mathbf{A} is called

- symmetric $\Longleftrightarrow(\mathbf{A u}, \mathbf{x})=(\mathbf{u}, \mathbf{A x}) \quad \forall \mathbf{u}, \mathbf{x} \in D(\mathbf{A})$, i.e. $\mathbf{A}^{*} \mathbf{x}=\mathbf{A x} \quad \forall \mathbf{x} \in D(\mathbf{A}) \wedge D(\mathbf{A}) \subseteq D\left(\mathbf{A}^{*}\right)$
- selfadjoint $\Longleftrightarrow \mathbf{A}=\mathbf{A}^{*}$, i.e. $\mathbf{A}^{*} \mathbf{x}=\mathbf{A x} \quad \forall \mathbf{x} \in D(\mathbf{A})=D\left(\mathbf{A}^{*}\right)$
- skew symmetric $\Longleftrightarrow(\mathbf{A u}, \mathbf{x})=-(\mathbf{u}, \mathbf{A x}) \quad \forall \mathbf{u}, \mathbf{x} \in D(\mathbf{A})$
- skew adjoint $\Longleftrightarrow \mathrm{A}=-\mathrm{A}^{*}$

Definition 76 The linear operator $\mathbf{A}: D(\mathbf{A}) \subseteq \mathbb{H} \rightarrow \mathbb{H}$ is called positive definite, if and only if:
$(\mathbf{A u}, \mathbf{u}) \geq C\|\mathbf{u}\|^{2} \quad$ for $\forall \mathbf{u} \in D(\mathbf{A}), \quad C \in \mathbb{R}, \quad C>0$
Definition 77 The complex number $\lambda \in \mathbb{C}$ is called the eigenvalue of the operator $\mathbf{A}: \mathbb{H} \rightarrow \mathbb{H}$, if there exists an element $\mathbf{x} \in \mathbb{H}, \mathbf{x} \neq \mathbf{0}$, such that $\mathbf{A x}=\lambda \mathbf{x}$. Every $\mathbf{x} \neq \mathbf{0}$ with $\mathbf{A x}=\lambda \mathbf{x}$ is called an eigenelement of the eigenvalue λ.

Definition 78 Operators in a HILBERT space \mathbb{H} over the field $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ which map from \mathbb{H} to \mathbb{K} are called functionals or linear forms:
$\mathrm{f}: \mathbb{H} \rightarrow \mathbb{K}$.
Definition 79 The functional $\mathbf{f}: \mathbb{H} \rightarrow \mathbb{K}$ is called:

- linear, if: $\mathbf{f}(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha f(\mathbf{u})+\beta f(\mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H} ; \forall \alpha, \beta \in \mathbb{K}$
- bounded, if: $\exists M \in \mathbb{R}, M>0 \quad|\quad| f(\mathbf{u}) \mid \leq M\|\mathbf{u}\| \quad \forall \mathbf{u} \in \mathbb{H}$
- continuous, if: $\lim _{n \rightarrow \infty} \mathbf{u}_{n}=\mathbf{u}$ implies $\lim _{n \rightarrow \infty} \mathbf{f}\left(\mathbf{u}_{n}\right)=\mathbf{f}(\mathbf{u})$; $\mathbf{u}_{n}, \mathbf{u} \in \mathbb{H}$.

Definition 80 Given a linear bounded functional $\mathbf{f}: \mathbb{H} \rightarrow \mathbb{K}$. The number

$$
\begin{aligned}
\|\mathbf{f}\| & =\sup _{\|\mathbf{u}\|=1}|\mathbf{f}(\mathbf{u})|, \quad \mathbf{u} \in \mathbb{H} \\
& =\inf \{M \in \mathbb{R}| | \mathbf{f}(\mathbf{u}) \mid \leq M\|\mathbf{u}\| \quad \forall \mathbf{u} \in \mathbb{H}\}
\end{aligned}
$$

is called the norm of the functional.
Theorem 81 The HILBERT space representation theorem (RIESZ) Let \mathbb{H} be a HILBERT space \mathbb{H} over the field \mathbb{K} with the inner product (.,.) and let $\mathbf{f}(\mathbf{x})$ be a continuous linear functional in \mathbb{H}. Then there exists a fixed unique element $\mathbf{u}_{0} \in \mathbb{H}$ such that $\mathbf{f}(\mathbf{x})=\left(\mathbf{x}, \mathbf{u}_{0}\right) \quad \forall \mathbf{x} \in \mathbb{H}$ and $\|\mathbf{f}\|=\left\|\mathbf{u}_{0}\right\|$.

Definition 82 Given a sequence $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ in the HILBERT space \mathbb{H}. If $\lim _{n \rightarrow \infty} \mathbf{f}\left(\mathbf{x}_{n}\right)=\mathbf{f}(\mathbf{x})$ for every linear continuous functional \mathbf{f} on \mathbb{H} then $\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ tends weakly to $\mathbf{x} \in \mathbb{H}$ as n tends to infinity We write: $\mathbf{x}_{n} \rightharpoonup \mathbf{x}$

Definition 83 A bilinear form on a HILBERT space \mathbb{H} over the field \mathbb{K} is a bilinear mapping $\mathbf{a}: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{K}$. That means:

$$
\begin{aligned}
\mathbf{a}(\alpha \mathbf{u}+\beta \mathbf{v}, \mathbf{w}) & =\alpha \mathbf{a}(\mathbf{u}, \mathbf{w})+\beta \mathbf{a}(\mathbf{v}, \mathbf{w}) \\
\mathbf{a}(\mathbf{w}, \alpha \mathbf{u}+\beta \mathbf{v}) & =\alpha \mathbf{a}(\mathbf{w}, \mathbf{u})+\beta \mathbf{a}(\mathbf{w}, \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{H}, \forall \alpha, \beta \in \mathbb{K} .
\end{aligned}
$$

Definition 84 The bilinear form $\mathbf{a}: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{K}$ is called

- bounded, if $\exists C>0 ; C \in \mathbb{R} \quad|\quad| \mathbf{a}(\mathbf{u}, \mathbf{v}) \mid \leq C\|\mathbf{u}\|\|\mathbf{v}\| \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}$
- symmetric, if $\mathbf{a}(\mathbf{u}, \mathbf{v})=\mathbf{a}(\mathbf{v}, \mathbf{u}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{H}$
- positive semidefinite, if $\mathbf{a}(\mathbf{u}, \mathbf{u}) \geq 0 \quad \forall \mathbf{u} \in \mathbb{H}$
- positive definite, if $\mathbf{a}(\mathbf{u}, \mathbf{u}) \geq C\|\mathbf{u}\|^{2} \quad \forall \mathbf{u} \in \mathbb{H} \wedge C>0, C=$ const.

3.2 The space $\mathbb{L}_{2}(a, b)$

Elements: measurable functions $\mathbf{f}:(a, b) \rightarrow \mathbb{C}$, with $(L) \int_{a}^{b}|\mathbf{f}(t)|^{2} d t<\infty$
These functions are called square-integrable.
Arithmetic operations: $\mathbf{f}(t)+\mathbf{g}(t)$ and. $\lambda \mathbf{f}(t), \lambda \in \mathbb{C}$ are calculated pointwise
Inner product/Norm: $(\mathbf{f}, \mathbf{g})=(L) \int_{a}^{b} \mathbf{f}(t) \overline{\mathbf{g}(t)} d t, \quad\|\mathbf{f}\|^{2}=(L) \int_{a}^{b}|\mathbf{f}(t)|^{2} d t$
SCHWARTZ's inequality: $|(\mathbf{f}, \mathbf{g})| \leq\|\mathbf{f}\|\|\mathbf{g}\|$, i.e.
$\left|(L) \int_{a}^{b} \mathbf{f}(t) \overline{\mathbf{g}(t)} d t\right|^{2} \leq\left((L) \int_{a}^{b}|\mathbf{f}(t)|^{2} d t\right) \cdot\left((L) \int_{a}^{b}|\mathbf{g}(t)|^{2} d t\right)$

Basis systems:

A) LEGENDRE polynomials
B) ONS with trigonometric functions
C) $(a, b)=(0, T)$: complete ONS:

$$
\boldsymbol{\varphi}_{k}(t)=\frac{1}{\sqrt{T}} \exp (i k \omega t) \quad k=0, \pm 1, \pm 2, \ldots \quad \omega=\frac{2 \pi}{T}
$$

Properties:

- The space $\mathbb{L}_{2}(a, b)$ is infinite-dimensional.
- $\mathbb{L}_{2}(a, b)$ is complete and separable.
- The elements of $\mathbb{L}_{2}(a, b)$ are classes of functions. $\mathbf{f}_{1}(t)$ and $\mathbf{f}_{2}(t)$ belong to the same class if $\mathbf{f}_{1}(t)=\mathbf{f}_{2}(t)$ almost everywhere over (a, b), i.e. if $\mathbf{f}_{1}(t) \neq \mathbf{f}_{2}(t)$ on a set of measure zero or $(L) \int_{a}^{b}\left|\mathbf{f}_{1}(t)-\mathbf{f}_{2}(t)\right| d t=0$

Definition $85 L_{2}(\mathbb{R} / 2 \pi)=\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f(t)$ is measurable, $f(t+2 \pi)=f(t) \forall t \in R$, $\left.\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{2} d t<\infty\right\}$

