Seminar 1 / Metric Spaces

1. Are the terms $d(x, y)$ metric functions?
a) $d(x, y)=\sin ^{2}(x-y) ; \quad x, y \in \mathbb{R}^{1}$
b) $d(x, y)=\sqrt{|x-y|} ; \quad x, y \in \mathbb{R}^{1}$
c) $d(x, y)=|\arctan (x-y)| ; \quad x, y \in \mathbb{R}^{1}$
d) $d(x, y)=\left|x_{1}-y_{1}\right| ; \quad x, y \in \mathbb{R}^{2}, x=\left(x_{1}, x_{2}\right)^{T}, y=\left(y_{1}, y_{2}\right)^{T}$
2. Verify the inequality:

$$
\frac{|a+b|}{1+|a+b|} \leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} ; \quad \forall a, b \in \mathbb{R}^{1}
$$

Tip: Use the monotony of the function $f(x)=\frac{x}{1+x}$.
3. Prove by using the inequality of number 2 that the set of all real sequences with the following function $d(x, y)$ is a metric space:

$$
d(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|} ; \quad x=\left\{x_{k}\right\}_{k=1}^{\infty} ; \quad y=\left\{y_{k}\right\}_{k=1}^{\infty}
$$

4. Verify that the following two axioms are equivalent to the axioms of the metric space:
a) $d(x, y)=0 \Leftrightarrow x=y$
b) $d(x, y) \leq d(x, z)+d(y, z) \quad \forall x, y, z \in \mathbb{X}$
5. Prove that the metric function is continuous, i.e.
$\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$ imply $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(x, y)$.
6. Let M be the set of all n-digit binary words $x=x_{1} x_{2} \ldots x_{n}$.

The HEMMING - distance d_{H} of such two binary words x, y is given by the number of digits which are different between x and y.
Verify that
a) $d_{H}(x, y)=\sum_{k=1}^{n}\left[\left(x_{k}+y_{k}\right) \bmod 2\right]$
b) $\left(M, d_{H}\right)$ is a metric space.
7. Let M be the set of all sequences of natural numbers. The distance between two different elements $x=\left\{x_{k}\right\}_{k=1}^{\infty}$ and $y=\left\{y_{k}\right\}_{k=1}^{\infty}$ is defined by $1 / \lambda$ such that λ is the smallest natural number satisfying $x_{\lambda} \neq y_{\lambda}$. Further $d(x, x)=0$.
Verify that (M, d) is a metric space. (It is an example of BAIRE Space.)
8. Let $\left(\mathbb{X}_{1}, d_{1}\right)$ and $\left(\mathbb{X}_{2}, d_{2}\right)$ be metric spaces. For any $x, y \in \mathbb{X}_{1} \times \mathbb{X}_{2}$, $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ the metric d is given by $d(x, y)=\max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)$.
Verify that $\left(\mathbb{X}_{1} \times \mathbb{X}_{2}, d\right)$ is a metric space.

Seminar 2 / Open and Closed Sets

1. Let (\mathbb{X}, d) be a metric space. A and B are proper subsets of $\mathbb{X}: A \subset \mathbb{X}, B \subset \mathbb{X}$.

Prove that $A \subset B$ implies $A^{+} \subseteq B^{+}$and $\bar{A} \subseteq \bar{B}$.
2. Let (\mathbb{X}, d) be a metric space. A and B are proper subsets of $\mathbb{X}: A \subset \mathbb{X}, B \subset \mathbb{X}$.

Verify that: $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$ and $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
But $\overline{A \cap B}=\bar{A} \cap \bar{B}$ is not valid. Give a counterexample!
3. Give an example for the following facts:
a) The intersection of an infinite collection of open sets must not be open.
b) The union of an infinite collection of closed sets must not be closed.
4. Let (\mathbb{X}, d) be a metric space. A and B are proper subsets of $\mathbb{X}: A \subset \mathbb{X}, B \subset \mathbb{X}$. Further let A be an open set and B a closed set. Verify that $A \backslash B$ is open and $B \backslash A$ is closed.
5. Write down the (derivated) set A^{+}, the set of all interior points $\stackrel{o}{A}$ and the closure \bar{A} of the following sets $A \subset \mathbb{R}$:
a) $A=\left\{\left.\frac{(-1)^{n} n^{2}}{1+n} \right\rvert\, n \in N\right\}$
b) $A=\bigcap_{n=1}^{\infty}\left[-\frac{1}{n} ; 1+\frac{1}{n}\right]$
c) $A=\bigcup_{n=1}^{\infty}\left[n-\frac{1}{n} ; n+\frac{1}{2 n}\right]$
d) $A=\bigcup_{n=1}^{\infty=1}\left(\frac{2^{n}-1}{2^{n}} ; \frac{2^{n+1}-1}{2^{n+1}}\right)$
6. Let E be the set $E=\left\{0 ; \frac{1}{n} ; \left.\frac{1}{n}+\frac{1}{m} \right\rvert\, n, m \in N\right\} \subset \mathbb{R}$ What is the (derivated) set E^{+}?
7. Let (\mathbb{X}, d) be a metric space. F_{1} and F_{2} are closed proper subsets of $\mathbb{X}: F_{1} \subset \mathbb{X}, F_{2} \subset \mathbb{X}$ such that $F_{1} \cap F_{2}=\emptyset$. Prove that there exist open sets G_{1} and G_{2} such that $F_{1} \subset G_{1}$, $F_{2} \subset G_{2}$ and $G_{1} \cap G_{2}=\emptyset$.
8. Let (\mathbb{X}, d) be a metric space. A is a proper subset of $\mathbb{X}: A \subset \mathbb{X}, \bar{A}$ is the closure of A. Let x be an interior point of \bar{A}. Do this imply that x is an interior point of A too?
9. ${ }^{* *}$ Look for an example of a metric space \mathbb{X} with the property, that there are more sets than the space \mathbb{X} and the empty set which are both open and closed.

Seminar 3 / Completeness of Metric Spaces

1. Verify that the following spaces are complete:
2. $\mathbb{X}=m$: space of all real bounded sequences such that $d(x, y)=\sup _{i}\left|x_{i}-y_{i}\right|, \sup _{i}\left|x_{i}\right|<\infty, \sup _{i}\left|y_{i}\right|<\infty$.
3. $\mathbb{X}=c$: space of all convergent real sequences such that $d(x, y)=\sup _{i}\left|x_{i}-y_{i}\right|$.
4. $\mathbb{X}=c_{0}$: space of all real null sequences such that $d(x, y)=\sup _{i}\left|x_{i}-y_{i}\right|$.
5. Is the set of all natural numbers together with the following metric a complete metric space?
6. $d_{1}(m, n)=\frac{|m-n|}{m \cdot n}$
7. $d_{2}(m, n)= \begin{cases}0 & \text { for } m=n \\ 1+\frac{1}{m+n} & \text { for } m \neq n\end{cases}$
8. Consider \mathbb{R}^{n} with the metric $d(x, y)=\max _{i}\left|x_{i}-y_{i}\right|$. Prove:
9. $\left(\mathbb{R}^{n}, d\right)$ is a metric space.
10. $\left(\mathbb{R}^{n}, d\right)$ is complete.
11. Consider a metric space (\mathbb{X}, d) and a proper subset $M \subset \mathbb{X}$. Let d_{0} be the restriction of the metric d onto M. Prove:
12. $\left(M, d_{0}\right)$ is a metric space.
13. If $\left(M, d_{0}\right)$ is complete, then M is closed in \mathbb{X}.
14. If (\mathbb{X}, d) is complete, then follows:
(M, d_{0}) is complete $\Leftrightarrow M$ is closed.
15. Consider a metric space (\mathbb{X}, d) and a compact proper subset $A \subset \mathbb{X}$. Let f be a contiuous mapping $f: A \rightarrow \mathbb{R}$. Prove:
16. $f(A)$ is a compact set.
17. The function f has an absolute maximum and an absolute minimum on A.
18. ${ }^{*}$ Let $C^{1}[a, b]$ be the set of all continuously differentiable functions with respect to $[a, b]$ For any $x(t), y(t) \in C^{1}[a, b]$ we define

$$
d(x, y)=\max _{a \leq t \leq b}|x(t)-y(t)|+\max _{a \leq t \leq b}\left|x^{\prime}(t)-y^{\prime}(t)\right| .
$$

1. Verify that $C^{1}[a, b]$ is a complete metric space.
2. Consider $C^{m}[a, b]$, the set of all m times continuously differentiable functions with respect to $[a, b]$. How can we define an analogous metric there?

Seminar 4 /Fix Point Theorem

1. Verify that the function $f:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ such that $f(x)=x^{3}$ is a contractive mapping in the metric space $X=\mathbb{R}$ with $d(x, y)=|x-y|$.
2. Verify that the function $f:[a, b] \rightarrow[c, d]$ such that $[c, d] \subseteq[a, b]$ and $\left|f^{\prime}(x)\right| \leq \alpha<1$ in $[a, b]$ is a contractive mapping in the metric space $X=\mathbb{R}$ with $d(x, y)=|x-y|$.
3. Look for the numbers $\lambda \in(0 ; 4]$ such that the mapping $f(x)=\lambda x(1-x)$ with $0 \leq x \leq 1$ is a contractive mapping in the metric space $X=\mathbb{R}$ with $d(x, y)=|x-y|$.
4. Let $a_{i k} \in \mathbb{C}, i, k=1,2, \ldots, n$ be the coefficients of the following system of linear equations

$$
\begin{aligned}
x_{i}-\sum_{k=1}^{n} a_{i k} x_{k} & =b_{i} \quad i=1,2, \ldots, n \quad \text { with } \\
\max _{1 \leq i \leq n} \sum_{k=1}^{n}\left|a_{i k}\right| & \leq q<1
\end{aligned}
$$

Show that this system of linear equations has a unique solution for every $b_{1}, \ldots b_{n} \in \mathbb{C}$.

Seminar 5 / Normed Spaces

1. Let \mathbb{U} be a complete normed space and \mathbb{S} be a proper subspace . Prove: The closure $\overline{\mathbb{S}}$ of \mathbb{S} is a subspace of \mathbb{U} too.
2. Let $\left(\mathbb{U}_{1},\|.\|_{1}\right)$ and $\left(\mathbb{U}_{2},\|.\|_{2}\right)$ be normed spaces over the field \mathbb{K}. Verify:
a) $\mathbb{U}_{1} \times \mathbb{U}_{2}$ is a normed space with $\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|x_{1}\right\|_{1}+\left\|x_{2}\right\|_{2}$ for every $\left(x_{1}, x_{2}\right) \in \mathbb{U}_{1} \times \mathbb{U}_{2}$.
b) If \mathbb{U}_{1} and \mathbb{U}_{2} are Banach spaces then $\mathbb{U}_{1} \times \mathbb{U}_{2}$ is a Banach space too..
3. Let $C_{b}(I)$ be the linear space of all in $I \subset \mathbb{R}$ defined bounded functions $x(t)$ with $\|x\|=\sup _{t \in I}|x(t)|$. Prove that $\left(C_{b}(I),\|\cdot\|\right)$ is a Banach space.
4. A subset A of a linear normed space \mathbb{U} with $\|$.$\| is called convex, if for any$ $x, y \in A$ the "connection line" $\alpha x+(1-\alpha) y$; $\alpha \in(0,1)$ belongs to A. Prove:
a) In a linear normed space the unit ball
$E=\{x \in \mathbb{U} \mid\|x\| \leq 1\}$ is a convex set.
b) The closure \bar{A} of a convex set A is convex too.
5. Let $\mathbb{U}=C[a, b] ;-\infty<a<b<\infty$ be a normed space with
$\|x\|=\max _{a \leq t \leq b}|x(t)|$.
Verify that:
a) $M=\left\{x \in \mathbb{U} \mid \int_{a}^{b} x(t) d t=0\right\}$ is a closed subspace of $\mathbb{U} . M$ is not dense in \mathbb{U}.
b) $M=\{x \in \mathbb{U} \mid x(a)=1\}$ is closed and convex, but M is not a subspace of \mathbb{U}.
c) If φ is defined by $\varphi(x)=|x(a)|$ then φ is not a norm in \mathbb{U}.
d) If the norm is defined by $\|x(t)\|_{1}=\int_{a}^{b}|x(t)| d t$, then $\|\cdot\|_{1}$ is a norm in \mathbb{U}, but \mathbb{U} is not a Banach space with respect to this norm. (advice: Construct a sequence of continuous functions which tends to a step function.)
e) The operators $A: \mathbb{U} \rightarrow \mathbb{R}$ and $B: \mathbb{U} \rightarrow \mathbb{U}$ are defined by

$$
(A x)(t)=x(a) \quad \text { and } \quad(B x)(t)=\int_{a}^{t} x(s) d s
$$

Prove:
A and B are linear continuous operators with $\|A\|=1$ and $\|B\|=b-a$.
f) Verify that the operator $F x=\int_{0}^{1} s x(s) d s$ is continuous.
g) Look for numbers $\alpha \in \mathbb{R}$ such that the operator
$(A x)(t)=\alpha \int_{a}^{t} \sin x(s) d s+1 ; A: \mathbb{U} \rightarrow \mathbb{U}$ is contractive.

Seminar 6 / Pre-Hilbert Spaces and Hilbert Spaces

1. Let $p(t)$ be a continuous positive function defined in $[0,1]$. Prove:

$$
(x, y)=\int_{0}^{1} p(t) x(t) \overline{y(t)} d t, \quad \forall x(t), y(t) \in C[0,1]
$$

is an inner product in $C[0,1]$ (with the weight $p(t)$).
2. Verify that in any spaces with inner product the following statements are satisfied:
a) $x \mid y \Leftrightarrow\|x+\alpha y\|=\|x-\alpha y\| \quad \forall \alpha \in \mathbf{K}$
b) $x \underline{\underline{I}} y \Leftrightarrow\|x\| \leq\|x-\alpha y\| \quad \forall \alpha \in \mathbf{K}$
3. Orthonormize the system of functions $1, t, t^{2}, \ldots t^{n}$ in $L_{2}[0, \infty)$ with the weighted inner product

$$
(f, g)=\int_{0}^{\infty} e^{-t} f(t) \overline{g(t)} d t
$$

4. Prove:
a) The Banach space $C[a, b] ;-\infty<a<b<\infty$ with the maximum norm $\|x\|=\max _{a \leq t \leq b}|x(t)|$ is not a Hilbert space.
b) The Banach space \mathbb{R}^{n} with $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ is not a Hilbert space, but with $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ it is.
5. Prove that the unit ball is not compact in separable infinite dimensional Hilbert spaces.
6. Let $\mathbb{X}=C[-1 ; 1]$ be a real space with the inner product

$$
(x, y)=\int_{-1}^{1} x(t) y(t) d t
$$

$E=\{x \in \mathbb{X} \mid x(t)=0 ; t \leq 0\}, F=\{x \in \mathbb{X} \mid x(t)=0 ; t \geq 0\}$.
Verify:
a) E, F are not closed subspaces of \mathbb{X}.
b) The set $E+F$ is not closed, too.
7. Calculate the best approximation of the function $f(t)=$ sint by the the polynoms $\phi_{i}(t)=t^{i-1} ; i=1,2, . .5$ in the space $L_{2}\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$.

