Seminar 1 / Metric Spaces

- 1. Are the terms d(x, y) metric functions? a) $d(x, y) = \sin^2(x - y); \quad x, y \in \mathbb{R}^1$ b) $d(x, y) = \sqrt{|x - y|}; \quad x, y \in \mathbb{R}^1$ c) $d(x, y) = |\arctan(x - y)|; \quad x, y \in \mathbb{R}^1$ d) $d(x, y) = |x_1 - y_1|; \quad x, y \in \mathbb{R}^2, \ x = (x_1, x_2)^T, \ y = (y_1, y_2)^T$
- 2. Verify the inequality:

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}; \qquad \forall a, b \in \mathbb{R}^1$$

Tip: Use the monotony of the function $f(x) = \frac{x}{1+x}$.

3. Prove by using the inequality of number 2 that the set of all real sequences with the following function d(x, y) is a metric space:

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}; \qquad x = \{x_k\}_{k=1}^{\infty}; \quad y = \{y_k\}_{k=1}^{\infty}$$

- 4. Verify that the following two axioms are equivalent to the axioms of the metric space:
 a) d(x, y) = 0 ⇔ x = y
 b) d(x, y) ≤ d(x, z) + d(y, z) ∀x, y, z ∈ X
- 5. Prove that the metric function is continuous, i.e. $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ imply $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$.
- 6. Let M be the set of all n-digit binary words x = x₁x₂....x_n. The HEMMING distance d_H of such two binary words x, y is given by the number of digits which are different between x and y. Verify that
 a) d_H(x, y) = ∑ⁿ_{k=1}[(x_k + y_k) mod 2]
 b) (M, d_H) is a metric space.
- 7. Let M be the set of all sequences of natural numbers. The distance between two different elements $x = \{x_k\}_{k=1}^{\infty}$ and $y = \{y_k\}_{k=1}^{\infty}$ is defined by $1/\lambda$ such that λ is the smallest natural number satisfying $x_{\lambda} \neq y_{\lambda}$. Further d(x, x) = 0. Verify that (M, d) is a metric space. (It is an example of BAIRE Space.)
- 8. Let (\mathbb{X}_1, d_1) and (\mathbb{X}_2, d_2) be metric spaces. For any $x, y \in \mathbb{X}_1 \times \mathbb{X}_2$, $x = (x_1, x_2), y = (y_1, y_2)$ the metric d is given by $d(x, y) = \max(d_1(x_1, y_1), d_2(x_2, y_2))$. Verify that $(\mathbb{X}_1 \times \mathbb{X}_2, d)$ is a metric space.

Seminar 2 / Open and Closed Sets

- 1. Let (\mathbb{X}, d) be a metric space. A and B are proper subsets of $\mathbb{X} : A \subset \mathbb{X}, B \subset \mathbb{X}$. Prove that $A \subset B$ implies $A^+ \subseteq B^+$ and $\overline{A} \subseteq \overline{B}$.
- 2. Let (\mathbb{X}, d) be a metric space. A and B are proper subsets of $\mathbb{X} : A \subset \mathbb{X}, B \subset \mathbb{X}$. Verify that: $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$. But $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is not valid. Give a counterexample!
- 3. Give an example for the following facts:a) The intersection of an infinite collection of open sets must not be open.b) The union of an infinite collection of closed sets must not be closed.
- 4. Let (X, d) be a metric space. A and B are proper subsets of $X : A \subset X, B \subset X$. Further let A be an open set and B a closed set. Verify that $A \setminus B$ is open and $B \setminus A$ is closed.
- 5. Write down the (derivated) set A^+ , the set of all interior points A and the closure \overline{A} of the following sets $A \subset \mathbb{R}$:

a)
$$A = \left\{ \frac{(-1)^n n^2}{1+n} | n \in N \right\}$$
 c) $A = \bigcup_{\substack{n=1 \\ n=1}}^{\infty} \left[n - \frac{1}{n}; n + \frac{1}{2n} \right]$
b) $A = \bigcap_{n=1}^{\infty} \left[-\frac{1}{n}; 1 + \frac{1}{n} \right]$ d) $A = \bigcup_{n=1}^{\infty} \left(\frac{2^n - 1}{2^n}; \frac{2^{n+1} - 1}{2^{n+1}} \right)$

- 6. Let E be the set $E = \{0; \frac{1}{n}; \frac{1}{n} + \frac{1}{m} \mid n, m \in N\} \subset \mathbb{R}$ What is the (derivated) set E^+ ?
- 7. Let (\mathbb{X}, d) be a metric space. F_1 and F_2 are closed proper subsets of $\mathbb{X} : F_1 \subset \mathbb{X}, F_2 \subset \mathbb{X}$ such that $F_1 \cap F_2 = \emptyset$. Prove that there exist open sets G_1 and G_2 such that $F_1 \subset G_1$, $F_2 \subset G_2$ and $G_1 \cap G_2 = \emptyset$.
- 8. Let (X, d) be a metric space. A is a proper subset of $X : A \subset X$, \overline{A} is the closure of A. Let x be an interior point of \overline{A} . Do this imply that x is an interior point of A too?
- 9. ** Look for an example of a metric space X with the property, that there are more sets than the space X and the empty set which are both open and closed.

Seminar 3 / Completeness of Metric Spaces

- 1. Verify that the following spaces are complete:
 - 1. $\mathbb{X} = m$: space of all real bounded sequences such that $d(x, y) = \sup_i |x_i y_i|, \ \sup_i |x_i| < \infty, \ \sup_i |y_i| < \infty.$
 - 2. $\mathbb{X} = c$: space of all convergent real sequences such that $d(x, y) = \sup_i |x_i y_i|$.
 - 3. $\mathbb{X} = c_0$: space of all real null sequences such that $d(x, y) = \sup_i |x_i y_i|$.
- 2. Is the set of all natural numbers together with the following metric a complete metric space?

1.
$$d_1(m,n) = \frac{|m-n|}{m \cdot n}$$

2. $d_2(m,n) = \begin{cases} 0 & \text{for } m = n \\ 1 + \frac{1}{m+n} & \text{for } m \neq n \end{cases}$

- 3. Consider \mathbb{R}^n with the metric $d(x, y) = \max_i |x_i y_i|$. Prove:
 - 1. (\mathbb{R}^n, d) is a metric space.
 - 2. (\mathbb{R}^n, d) is complete.
- 4. Consider a metric space (\mathbb{X}, d) and a proper subset $M \subset \mathbb{X}$. Let d_0 be the restriction of the metric d onto M. Prove:
 - 1. (M, d_0) is a metric space.
 - 2. If (M, d_0) is complete, then M is closed in X.
 - 3. If (\mathbb{X}, d) is complete, then follows: (M, d_0) is complete $\Leftrightarrow M$ is closed.
- 5. Consider a metric space (\mathbb{X}, d) and a compact proper subset $A \subset \mathbb{X}$. Let f be a continuous mapping $f : A \to \mathbb{R}$. Prove:
 - 1. f(A) is a compact set.
 - 2. The function f has an absolute maximum and an absolute minimum on A.
- 6. *Let $C^1[a, b]$ be the set of all continuously differentiable functions with respect to [a, b]For any $x(t), y(t) \in C^1[a, b]$ we define

$$d(x,y) = \max_{a \le t \le b} |x(t) - y(t)| + \max_{a \le t \le b} |x'(t) - y'(t)|.$$

- 1. Verify that $C^{1}[a, b]$ is a complete metric space.
- 2. Consider $C^{m}[a, b]$, the set of all m times continuously differentiable functions with respect to [a, b]. How can we define an analogous metric there?

Seminar 4 /Fix Point Theorem

- 1. Verify that the function $f : [0, \frac{1}{2}] \to \mathbb{R}$ such that $f(x) = x^3$ is a contractive mapping in the metric space $X = \mathbb{R}$ with d(x, y) = |x y|.
- 2. Verify that the function $f : [a, b] \to [c, d]$ such that $[c, d] \subseteq [a, b]$ and $|f'(x)| \leq \alpha < 1$ in [a, b] is a contractive mapping in the metric space $X = \mathbb{R}$ with d(x, y) = |x y|.
- 3. Look for the numbers $\lambda \in (0; 4]$ such that the mapping $f(x) = \lambda x(1-x)$ with $0 \le x \le 1$ is a contractive mapping in the metric space $X = \mathbb{R}$ with d(x, y) = |x y|.
- 4. Let $a_{ik} \in \mathbb{C}, i, k = 1, 2, ..., n$ be the coefficients of the following system of linear equations

$$x_{i} - \sum_{k=1}^{n} a_{ik} x_{k} = b_{i} \quad i = 1, 2, ..., n \quad \text{with}$$
$$\max_{1 \le i \le n} \sum_{k=1}^{n} |a_{ik}| \le q < 1.$$

Show that this system of linear equations has a unique solution for every $b_1, ..., b_n \in \mathbb{C}$.

Seminar 5 / Normed Spaces

- 1. Let $\mathbb U$ be a complete normed space and $\mathbb S$ be a proper subspace . Prove: The closure $\overline{\mathbb S}$ of $\mathbb S$ is a subspace of $\mathbb U$ too.
- 2. Let $(\mathbb{U}_1, \|.\|_1)$ and $(\mathbb{U}_2, \|.\|_2)$ be normed spaces over the field K. Verify: a) $\mathbb{U}_1 \times \mathbb{U}_2$ is a normed space with $\|(x_1, x_2)\| = \|x_1\|_1 + \|x_2\|_2$ for every $(x_1, x_2) \in \mathbb{U}_1 \times \mathbb{U}_2$. b) If \mathbb{U}_1 and \mathbb{U}_2 are Banach spaces then $\mathbb{U}_1 \times \mathbb{U}_2$ is a Banach space too..
- 3. Let $C_b(I)$ be the linear space of all in $I \subset \mathbb{R}$ defined bounded functions x(t) with $||x|| = \sup_{t \in I} |x(t)|$. Prove that $(C_b(I), ||.||)$ is a Banach space.
- 4. A subset A of a linear normed space U with ||.|| is called convex, if for any x, y ∈ A the "connection line" αx + (1 − α)y; α ∈ (0, 1) belongs to A. Prove:
 a) In a linear normed space the unit ball E = {x ∈ U | ||x|| ≤ 1} is a convex set.
 b) The closure A of a convex set A is convex too.
- 5. Let $\mathbb{U} = C[a, b]$; $-\infty < a < b < \infty$ be a normed space with $||x|| = \max_{a \le t \le b} |x(t)|$. Verify that:

a) $M = \{x \in \mathbb{U} \mid \int_a^b x(t)dt = 0\}$ is a closed subspace of \mathbb{U} . M is not dense in \mathbb{U} .

b) $M = \{x \in \mathbb{U} \mid x(a) = 1\}$ is closed and convex, but M is not a subspace of \mathbb{U} .

c) If φ is defined by $\varphi(x) = |x(a)|$ then φ is not a norm in \mathbb{U} .

d) If the norm is defined by $||x(t)||_1 = \int_a^b |x(t)| dt$, then $||.||_1$ is a norm in \mathbb{U} , but \mathbb{U} is not a Banach space with respect to this norm. (advice: Construct a sequence of continuous functions which tends to a step function.) e) The operators $A : \mathbb{U} \to \mathbb{R}$ and $B : \mathbb{U} \to \mathbb{U}$ are defined by

$$(Ax)(t) = x(a)$$
 and $(Bx)(t) = \int_{a}^{t} x(s)ds.$

Prove:

A and B are linear continuous operators with ||A|| = 1 and ||B|| = b - a.

- f) Verify that the operator $Fx = \int_0^1 sx(s)ds$ is continuous.
- g) Look for numbers $\alpha \in \mathbb{R}$ such that the operator
- $(Ax)(t) = \alpha \int_a^t \sin x(s) ds + 1; A : \mathbb{U} \to \mathbb{U}$ is contractive.

Seminar 6 / Pre-Hilbert Spaces and Hilbert Spaces

1. Let p(t) be a continuous positive function defined in [0, 1]. Prove:

$$(x,y) = \int_0^1 p(t)x(t)\overline{y(t)}dt, \qquad \forall x(t), y(t) \in C[0,1]$$

is an inner product in C[0,1] (with the weight p(t)).

2. Verify that in any spaces with inner product the following statements are satisfied:

a)
$$x[y \Leftrightarrow ||x + \alpha y|| = ||x - \alpha y|| \quad \forall \alpha \in \mathbf{K}$$

b) $x[y \Leftrightarrow ||x|| \le ||x - \alpha y|| \quad \forall \alpha \in \mathbf{K}$

3. Orthonormize the system of functions $1, t, t^2, ..., t^n$ in $L_2[0, \infty)$ with the weighted inner product

$$(f,g) = \int_0^\infty e^{-t} f(t) \overline{g(t)} dt.$$

4. Prove:

a) The Banach space C[a, b]; $-\infty < a < b < \infty$ with the maximum norm

 $||x|| = \max_{a \le t \le b} |x(t)|$ is not a Hilbert space. b) The Banach space \mathbb{R}^n with $||x||_1 = \sum_{i=1}^n |x_i|$ is not a Hilbert space, but with $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ it is.

- 5. Prove that the unit ball is not compact in separable infinite dimensional Hilbert spaces.
- 6. Let $\mathbb{X} = C[-1; 1]$ be a real space with the inner product

$$(x,y) = \int_{-1}^{1} x(t)y(t)dt,$$

 $E = \{ x \in \mathbb{X} \mid x(t) = 0 \; ; \; t \leq 0 \}, F = \{ x \in \mathbb{X} \mid x(t) = 0 \; ; \; t \geq 0 \}.$ Verify:

- a) E, F are not closed subspaces of X.
- b) The set E + F is not closed, too.
- 7. Calculate the best approximation of the function f(t) = sint by the the polynoms $\phi_i(t) = t^{i-1}$; i = 1, 2, ..5 in the space $L_2[-\frac{\pi}{2}; \frac{\pi}{2}]$.