
Domination in graphs with application to

network reliability

By the Faculty of Mathematics and Computer Science

of the Technische Universität Bergakademie Freiberg

approved

Thesis

to attain the academic degree of

Doctor rerum naturalium

(Dr.rer.nat.)

submitted by Markus Dod, M.Sc.

born on the 31. Januar 1985 in Bad Neustadt/Saale

Assessor: Prof. Dr. rer. nat. habil. Martin Sonntag

Prof. Dr. rer. nat. Peter Tittmann

Date of the award: Freiberg, 19th October 2015





3

Abstract

In this thesis we investigate di�erent domination-related graph polynomials, like the connected
domination polynomial, the independent domination polynomial, and the total domination
polynomial. We prove some basic properties of these polynomials and obtain formulas for the
calculation in special graph classes. Furthermore, we also prove results about the calculation
of the di�erent graph polynomials in product graphs and di�erent representations of the graph
polynomials.
One focus of this thesis lays on the generalization of domination-related polynomials. In

this context the trivariate domination polynomial is de�ned and some results about the bipar-
tition polynomial, which is also a generalization of the domination polynomial, is presented.
These two polynomials have many useful properties and interesting connections to other graph
polynomials. Furthermore, some more general domination-related polynomials are de�ned in
this thesis, which shows some possible directions for further research.
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1 Introduction

Technical systems like communication networks, power grids, tra�c management systems,
and enterprise data networks have a net-like structure. The mathematical model for such
networks is an undirected or directed graph. Let us use a computer network as an example.
Here the computers are the components (vertices) of the graph and the links between them
represent the edges (e.g. see Figure 1.1). Now imagine, we want to monitor the functions
of each of the computers by one or a small number of computers in such a way that every
of these computers can control its neighbors. In graph theory we call these controllers a
dominating (vertex) set. Several questions emerge naturally in this context. When the e�ort
of monitoring the network is to be minimized, then a smallest dominating set provides the
solution. What is the minimum number of computers required to completely monitor the
communication network? How can we �nd such a minimum dominating set?

Now assume that the computers (routers, terminals) of the network are subject to random
failure, but also failed computers have to be monitored. Then we can ask for the probability
that the complete network is monitored. Translated to the language of graph theory, we ask
for the probability that a randomly selected vertex subset forms a dominating set in the graph
that re�ects the topology of the given computer network.

A variety of new problems appears as soon as we impose additional properties on the
dominating set. We can, for instance, restrict the choice of dominating sets to independent
vertex sets or to vertex sets that induce connected subgraphs. The last requirement has
interesting applications for routing in wireless networks.

Fig. 1.1: A computer network.
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The calculation of discrete probabilities leads directly to problems of counting and enu-
meration. The computation of the probability of a given graph property in a �nite random
graph usually results in a subgraph counting problem. A classical example is the all-terminal
reliability of networks which can be obtained from the number of connected spanning sub-
graphs. Generating functions for the counting sequences, i.e. graph polynomials, provide a
powerful tool in the area of graphical enumeration. Unfortunately, the computation of many
interesting graph polynomials, especially those ones considered in this thesis, is proved to be
NP-hard.

The �rst graph polynomial studied in literature is the chromatic polynomial, which counts
the number of proper colorings of graphs (a coloring of the vertices such that neighbors
do not have the same color). It was de�ned by G.D. Birkho� [Bir12] to attack the four
color problem in 1912. This and other famous graph polynomials, like the Tutte polynomial,
were extensively studied in the last hundred years. J.L. Arocha and B. Llano de�ned the
domination polynomial in 2000 [AL00], which is the ordinary generating function for the
number of dominating sets in a graph. Since then, a lot of papers were published about this
polynomial and many results have been proved, like the calculation in special graph classes,
or the location of the zeros of the domination polynomial.

The main aim of this dissertation is to investigate domination-related polynomials. This
goal is divided into two parts. The �rst part is dedicated to the counting of dominating sets
with special properties, e.g. they must be connected or independent. In the second part we
introduce generalizations of several simple graph polynomials to more complex graph poly-
nomials. These generalizations often give us new results and knowledge about the included
graph polynomials. They also help us to �nd connections between the di�erent graph polyno-
mials and give some sort of organization of the various graph polynomials. This approach was
mainly motivated by the paper of J. A. Makowsky with the title �From a Zoo to a Zoology:
Towards a General Theory of Graph Polynomials� [Mak07].

As mentioned before, counting problems in graphs often have a connection to problems in
the reliability context. The results about domination-related counting problems in this thesis
can also be applied to the corresponding reliability polynomials.

1.1 Own Contributions and Publications

My own contributions are the de�nition of the connected domination polynomial, the trivariate
domination polynomial and the independent domination polynomial. Furthermore, I proved
several results about the di�erent domination related polynomials, especially the calculation
in product graphs, di�erent recurrence equations and representations. Some of these results
are already published or submitted:

• Markus Dod: The Independent Domination Polynomial, submitted to Graphs and Com-
binatorics.

• Markus Dod: Graph products of the trivariate total domination polynomial and related
polynomials, submitted to Discrete Applied Mathematics.

• Markus Dod, Peter Tittmann: Isolated Vertices in Random Graphs in Scienti�c Reports,
E-Mobility and Reliability in Communication Networks. Journal of the University of
Applied Sciences Mittweida, 1 (2015).
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• Markus Dod, Tomer Kotek, James Preen, and Peter Tittmann: Bipartition polynomials,
the ising model, and domination in graphs. Discussiones Mathematicae Graph Theory
35.2 (2015), pp. 335�353.

• Markus Dod: The total domination polynomial. Congressus Numerantium 219 (2014),
pp. 207�226.

The results were also partially presented in talks on international conferences:

• On the counting of independent dominating sets, Colloquium on Combinatorics, Ilme-
nau, Germany, 2014.

• Graph products of the trivariate total domination polynomial, 9th International collo-
quium on graph theory and combinatorics, Grenoble, France, 2014.

• The Total Domination Polynomial, Forty-Fifth Southeastern International Conference
on Combinatorics, Graph Theory, and Computing, Boca Raton, USA, 2014.

• The Total Domination Polynomial, Colloquium on Combinatorics, Ilmenau, Germany,
2013.

• The Bipartition Polynomial, the Ising Model and the Matching Polynomial, CID 2013 -
Colourings, Independence and Domination, Szklarska Por¦ba, Poland, 2013.

• Generalisations of the domination reliability polynomial, SEG-Workshop, Freiberg, Ger-
many, 2012.

1.2 Organization of this Thesis

The thesis is organized as follows. In Chapter 2 some basic graph theoretic de�nitions and no-
tations are introduced. In the following chapter the domination and the domination reliability
polynomial are de�ned, a short overview over known results is given and some new results,
especially for product graphs, are proved. Furthermore, the connection to the neighborhood
polynomial is shown. The independent domination polynomial is de�ned in Chapter 4. We
show some properties of the independent domination polynomial and prove formulas for the
calculation in special graph classes and in product graphs.
In Chapter 5 some properties of the total domination polynomial are proved. Additionally,

in this chapter the trivariate domination polynomial is de�ned. The main results are its
connection to other graph polynomials and the calculation in product graphs. The connected
domination polynomial is de�ned in Chapter 6. Chapter 7 presents some results about the
bipartition polynomial, especially about the encoded graph invariants and the calculation
in special graph classes. Furthermore, we present some results for the counting of bipartite
subgraphs in this chapter, which yields a connection to the edge-cover polynomial. Chapter 8
shows some possible further generalizations of the domination polynomial and Chapter 9
summarizes this thesis.
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2 Basics

In this chapter we introduce the basic graph theoretic concepts and de�nitions that we use
in this thesis. The de�nitions follow the standard de�nitions of the textbooks [Har69; Die00;
Wes01] and [GY04].

De�nition 2.1. A graph G = (V,E) is an ordered pair of a �nite set of vertices V and a set
of edges E, such that every edge is an one- or two-element subset of the vertex set. We call
an edge e ∈ E a loop if it is an one-element subset of V . A graph is called simple if it has
no loops and it is called nontrivial if |V | ≥ 2.

In the following we write V (G) and E(G) for the vertex and the edge set of the graph G
and if there is no risk of confusion we simply write V and E. The order of a graph denotes
the number of vertices and the size its number of edges. A vertex u ∈ V is called adjacent
to v ∈ V if {u, v} ∈ E and two edges are called adjacent if they have one end vertex in
common. An edge {u, v} ∈ E is called incident to its end vertices u and v. Let v be a vertex
of G = (V,E), then N(v) = {u ∈ V : {u, v} ∈ E} is the open neighborhood of the vertex v
and N [v] = N(v) ∪ {v} is the closed neighborhood . Let U ⊆ V be a vertex subset, then

N(U) =
⋃
u∈U

N(u)\U

is the open neighborhood of the subset U . Sometimes we need the union of the open neigh-
borhoods of the vertices in U . This set is called the total open neighborhood

N t(U) =
⋃
v∈U

N(v).

Let now U ⊆ V and u ∈ U . Then PN(u, U) denotes the set of private neighbors of u
with respect to the vertex subset U . A vertex v ∈ V is called a private neighbor of u
if N [v] ∩ U = {u}. Note that if u ∈ U is not adjacent to any other vertex in U , then
u ∈ PN(u, U).
According to the de�nition of the open neighborhood of a vertex, the degree of a vertex is

denoted by degG(v) and it is the size of the open neighborhood of this vertex. The minimum
and maximum degree of a graph are given by δ(G) = min

v∈V
{deg(v)} and ∆(G) = max

v∈V
{deg(v)}.

Furthermore, we denote by ]degi(G) the number of vertices with degree i of the graph G.
A path in a graph G = (V,E) is an ordered sequence of pairwise di�erent vertices v1, . . . , vn,

such that {vi, vi+1} ∈ E, for i ∈ {1, . . . , n − 1}. A graph G is connected if at least one path
between every pair of its vertices exists.
The complement Ḡ of a graph G = (V,E) has the vertex set V and two vertices in Ḡ are

adjacent if and only if these two vertices are non-adjacent in G. The line-graph L(G) of a
graph G has a vertex for each edge of G and two vertices of L(G) are adjacent if and only if
they correspond to two adjacent edges in G.

De�nition 2.2. Let G = (V,E) and G′ = (V ′, E′) be graphs. Then G′ is called a subgraph
of G (G′ ⊆ G), if V ′ ⊆ V and E′ ⊆ E.
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De�nition 2.3. Let G = (V,E) be a graph and F ⊆ E be an edge subset. Then the spanning
subgraph G〈F 〉 is the graph

G〈F 〉 = (V, F ).

De�nition 2.4. Let G = (V,E) be a graph and U ⊆ V be a vertex subset of G. The induced
subgraph G[U ] of G is the graph

G[U ] = (U, {e ∈ E|e ⊆ U}).

In short, we write E(U) for the edge subset {e ∈ E|e ⊆ U}.

De�nition 2.5. Let G = (V (G), E(G)) and H = (V (H), E(H)) be simple graphs. An
isomorphism from G to H is a bijection φ : V (G) → V (H) such that {u, v} ∈ E(G) if and
only if {φ(u), φ(v)} ∈ E(H). If such an isomorphism for two graphs G and H exists, we write
G ∼= H.

Let H be a set of graphs and G be a graph. The graph G is called H-free if no induced
subgraph of G is isomorphic to a graph in H. If H is a speci�c graph class (e.g. cycles or
paths), then we simply write that the graph G does not contain this graph class. Similar to
the de�nition of the (vertex-) induced subgraph of G we can de�ne the edge-induced subgraph
for a given edge subset.

De�nition 2.6. Let G = (V,E) be a graph and F ⊆ E be an edge subset of G. The edge-
induced subgraph G[F ] of G is the graph

G[F ] =

(⋃
e∈F

e, F

)
.

A maximum connected subgraph of G is called a component of G and a component is called
covered if it contains at least one edge. A vertex of degree zero is called an isolated vertex.

De�nition 2.7. Let G = (V,E) be a graph, then k(G) denotes the number of components,
c(G) the number of covered components and iso(G) denotes the number of isolated vertices
of G. Therefore, k(G) = c(G) + iso(G). Furthermore, Comp(G) denotes the set of covered
components of G.

De�nition 2.8. [KPT13] Let G = (V,E) be a graph with k components of size λi, i ∈
{1, . . . , k}, and |V | = n. The type of G is the integer partition λG = (λ1, . . . , λk) ` n. We
write i ∈ λG in order to indicate that i is a part of λG. The number of parts is denoted by
|λG|.

De�nition 2.9. Let G = (V,E) be a graph. A hole in the graph G is a cordless cycle of
length at least four and an anti-hole is the complement of such a cycle.

A vertex subset is called independent if its vertices are pairwise non-adjacent and it is
called a clique if its vertices are pairwise adjacent. We denote by α(G) and ω(G) the order
of a maximum independent subgraph and the order of a maximum clique, respectively. A
matching of the graph G is an edge subset F such that e∩ f = ∅, for all e, f ∈ F with e 6= f .
A matching F is called perfect if

⋃
e∈F e = V . A (vertex) coloring of the graph G = (V,E)

with k colors is a function c : V → {1, . . . , k} and the coloring c is called proper if c(u) 6= c(v),
for all {u, v} ∈ E.
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De�nition 2.10. Let G = (V,E) be a graph and X ⊆ V be a vertex subset. Then X is called
a separating vertex set if the graph G − X has at least two components. Let G1 = (V1, E1)
and G2 = (V2, E2) be two subgraphs of G with V1 ∩ V2 = X, V1 ∪ V2 = V , E1 ∩ E2 = ∅ and
E1∪E2 = E, then we call (G1, G2, X) a splitting of G. If |X| = 1, then the separating vertex
is called an articulation.

2.1 Graph Operations

In this thesis we use a diversity of graph operations, that can partially be found in the
literature. Let v ∈ V be a vertex and e = {u, v} ∈ E be an edge of G.

• G− v denotes the graph obtained from G by the removal of v and all edges incident to
v.

• G/v denotes the graph obtained from G by the removal of v and the addition of edges
between any pair of non-adjacent vertices of N(v).

• G � v denotes the graph obtained from G by removing all edges between vertices of
N(v).

• G} v denotes the graph G� v − v.

• G◦v denotes the graph obtained from G by removing v and adding loops to all neighbors
of v.

• G−X denotes the graph obtained by deleting all vertices of the vertex subset X ⊆ V
and the edges incident to them.

• G\X denotes the fusion of all vertices of X to a single vertex. Furthermore, G\xX
denotes the fusion of all vertices of X and the new vertex is labeled with x.

• GB(X denotes the fusion of all vertices of X ⊆ V and the addition of a new vertex
which is adjacent to the fused one.

• G + {v, · } denotes the graph (V ∪ {v′}, E ∪ {v, v′}) obtained from G by adding a new
vertex v′ and an edge {v, v′} to G.

• G + {X, · }u denotes the graph (V ∪ {u}, E ∪ {{u, x} : x ∈ X}) obtained from G by
adding a new vertex u and edges joining all vertices of X with u.

• G− e denotes the graph obtained from G by removing e.

• G/e (contraction of the edge e) denotes the graph obtained from G by removing e and
unifying the end vertices of e.

• G†e (extraction of the edge e = {u, v}) denotes the graph G− u− v.

Composite operations will be applied from left to right, e.g. G − e/u which stands for
(G− e)/u.

Remark 2.11. Let G = (V,E) be a graph and v ∈ V . Then

(G� v)/v ∼= G/v,

(G� v)−N [v] ∼= G−N [v]. (2.1)
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2.2 Graph Classes

In this section, several graph classes will be de�ned which are used in this thesis. For more
graph classes see the �Information System on Graph Classes and their Inclusions� [Rid+01].
A graph G is called complete if all vertices are pairwise adjacent. We denote a complete

graph with n vertices by Kn and the edgeless graph with n vertices by En. Note that
V (Kn) = {1, . . . , n}. If we remove only a few edges from the complete graph we obtain
the so called k-bounded complete graphs.

De�nition 2.12. A graph G = (V,E) is k-bounded complete if every vertex in V has at
most k non-neighbors in V.

Remark 2.13. The 1-bounded complete graphs are obtained from a complete graph by remov-
ing a matching.

De�nition 2.14. Let k and l be two natural numbers, Kn0 be a complete graph with n0

vertices and Eni be an edgeless graph of order ni, for 2 ≤ ni ≤ k + 1, i ∈ {1, . . . , l},
and n = n0 + n1 + · · · + nl. Then the simple k-bounded complete graph Kk

n of the type
Λ(Kk

n) = [n0, n1, n2, . . . , nl] is the join (see De�nition 2.35) of these l + 1 graphs.

Fig. 2.1: Simple 2-bounded complete graph with 7 vertices.

A bipartite graph consists of two independent vertex sets X and Y and edges joining the
vertices of these two sets. A bipartite graph is called complete (denoted by Km,n if |X| = m
and |Y | = n) if all vertices of X are adjacent to all vertices of Y . König [Kön36] proved the
famous theorem which says that a graph is bipartite if and only if it has no odd cycle. Some
special bipartite graphs are the k-bounded bipartite graphs.

De�nition 2.15. [Rid+01] A bipartite graph G = (X ∪Y,E) is k-bounded bipartite Kk
m,n if

every vertex in X, respectively Y , has at most k non-neighbors in Y , respectively X.

Remark 2.16. The 1-bounded bipartite graphs are constructed from a complete bipartite graph
by removing a matching.

Let G = (V,E) be a graph and v ∈ V . If N(v) induces a clique in G, then v is called
simplicial . A perfect elimination ordering is an ordering s = (v1, . . . , vn) of V with the
property that vi is a simplicial vertex of G[{vi, . . . , vn}], for all i ∈ {1, . . . , n}. A graph is
called chordal if it has a perfect elimination ordering.
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Fig. 2.2: A complete bipartite graph K4,3 and a 1-bounded bipartite graph K1
4,3.

A tree is a connected graph without (induced) cycles and a forest is a graph such that all
its components are trees. A generalization of trees are k-trees.

De�nition 2.17. The complete graph with k vertices is a k-tree. A k-tree with n+ 1 vertices
(n ≥ k) can be constructed from a k-tree with n vertices by adding a vertex adjacent to all
vertices of a k-clique of the existing k-tree.

Fig. 2.3: A 2-tree with 13 vertices.

It follows directly from the de�nition of the k-tree that every k-tree is a chordal graph and
therefore there exists a perfect elimination ordering. The class of k-trees can be characterized
by a generalization of line graphs.

De�nition 2.18. [MJP06] The k-line graph of a graph G is de�ned as a graph whose vertices
are the cliques of size k in G. Two vertices are adjacent in the k-line graph if and only if the
corresponding cliques in G have k − 1 vertices in common.

De�nition 2.19. A graph G = (V,E) is a split graph if the vertex set can be partitioned in an
independent set and a clique. A split graph of order n is called an (n, k)-star Sn,k if the clique
has the order k and every vertex of the clique is adjacent to all vertices of the independent
set.

Lemma 2.20. A k-tree G = (V,E) is an (n, k)-star, with n > k, if and only if the (k+1)-line
graph of G is a clique of size n− k.

Proof. Each leaf vertex is a clique of size k + 1 together with the k center vertices and all of
the (k+ 1)-cliques have k vertices in common. Therefore, all vertices in the (k+ 1)-line graph
are pairwise adjacent.
If the (k+1)-line graph is a clique of size n−k, then the corresponding cliques have pairwise

k vertices in common. Hence, the original graph is an (n, k)-star.
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Fig. 2.4: A 3-tree and its 4-line graph.

Fig. 2.5: A (8, 4)-star and its 5-line graph.

De�nition 2.21. [MJP06] The complete graph with k vertices is a simple k-tree. A simple
k-tree with n+ 1 vertices (n ≥ k + 1) can be constructed from a simple k-tree with n vertices
by adding a vertex adjacent to all vertices of a k-clique not previously chosen in the existing
simple k-tree.

Lemma 2.22. [MJP06] A k-tree G = (V,E) with n > k vertices is a simple k-tree if and
only if the (k + 1)-line graph of G is a tree.

Lemma 2.23. [MJP06] Let G be a k-tree with n > k vertices. G is a k-path graph if and
only if G is a simple k-tree with exactly two simplicial vertices.

De�nition 2.24. Let G be a k-path of order n with the vertex set V = {1, . . . , n}. Then the k-

path is called simple or short P
(k)
n if there exists a perfect elimination ordering s = (1, 2, . . . , n)

with NG[{l,...,n}](l) = {l + 1, . . . , l + k}, for all l ∈ {1, . . . , n− k} (see Figure 2.6).

De�nition 2.25. A k-cycle C
(k)
n occurs from a simple k-path P

(k)
n by adding edges between

the �rst k vertices and the last k vertices of the simple k-path.

Remark 2.26. A path Pn is the simple 1-path P
(1)
n and the cycle Cn is the 1-cycle C

(1)
n .
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Fig. 2.6: A simple 2-path and a 2-path.
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Fig. 2.7: A 2-cycle with 9 vertices.

2.3 Graph Products

Graph products are well known in literature and have many applications. Some enumeration
and decision problems, e.g. �nding the maximum number of non-attacking kings that can be
paced on an n × m-chessboard, have a natural relation to graph products. For a more de-
tailed explanation and applications of graph products, see the �Handbook of product graphs�
[HIK11]. For simplicity we assume that all graphs are nontrivial and simple. The vertex set
of the following four products is the Cartesian product of the vertex sets of the two graphs,
denoted by V (G)×V (H). However, each product has di�erent rules to generate the edge set.
The �rst product of interest is the Cartesian product of the two graphs G and H.

De�nition 2.27. The Cartesian product G�H of the graphs G = (V (G), E(G)) and H =
(V (H), E(H)) is a graph such that

1. the vertex set of G�H is V (G)× V (H) and

2. two vertices (u, v) and (x, y) are adjacent in G�H if and only if u = x and {v, y} ∈ E(H)
or {u, x} ∈ E(G) and v = y.

Theorem 2.28. [HIK11] The graph G�H is connected if and only if G and H are connected.
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P4

P3

Fig. 2.8: The Cartesian product P4�P3.

The second product of interest is the tensor product. In the literature this product has a lot
of di�erent names: Direct product, Kronecker product, cardinal product, relational product,
cross product, conjunction, weak direct product, Cartesian product, product, and categorical
product. See [HIK11; Wei62] for a detailed overview over the tensor product. Figure 2.9
shows the tensor product P4 × P3.

De�nition 2.29. The tensor product or the categorical product G × H of the graphs G =
(V (G), E(G)) and H = (V (H), E(H)) is a graph such that

1. the vertex set of G×H is V (G)× V (H) and

2. two vertices (u, v) and (x, y) are adjacent in G × H if and only if {u, x} ∈ E(G) and
{v, y} ∈ E(H).

P4

P3

Fig. 2.9: The tensor product P4 × P3.

Theorem 2.30. [Wei62] Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs with
|V (G)|, |V (H)| ≥ 2. The graph G × H is connected if and only if G or H contains an odd
cycle. If both graphs are connected and bipartite, then G×H has exactly two components.

The lexicographic product was �rst introduced by Harary [Har59] as the composition of
graphs and it is also known as graph substitution.

De�nition 2.31. The lexicographic product G · H of the graphs G = (V (G), E(G)) and
H = (V (H), E(H)) is a graph such that

1. the vertex set of G ·H is V (G)× V (H) and
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2. two vertices (u, v) and (x, y) are adjacent in G ·H if and only if {u, x} ∈ E(G) or u = x
and {v, y} ∈ E(H).

P4

P3

Fig. 2.10: The lexicographic product P4 · P3.

Theorem 2.32. [HIK11] The graph G ·H is connected if and only if G is connected.

De�nition 2.33. The strong product (or AND product) G�H of the graphs G and H is a
graph such that

1. the vertex set of G�H is V (G)× V (H) and

2. E(G�H) = E(G�H) ∪ E(G×H).

P4

P3

Fig. 2.11: The strong product P4 � P3.

It follows immediately from the connection to the Cartesian product that the graph G�H
is connected if and only if G and H are connected.

Theorem 2.34. [HIK11] The Cartesian product, the tensor product and the strong product
are commutative, associative and distributive. The lexicographic product is not commutative,
but associative and right-distributive. Furthermore, the K1 is an unit with respect to these
four graph products.

For proofs and explanations it is necessary to identify special vertices in the product graph.
Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. As the Figures 2.8 - 2.11 show,
we can draw the products of these two graphs in a grid structure. Therefore, the row Rv is the
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vertex subset {(v, w) : w ∈ V (H)} and the column Cw is the vertex subset {(v, w) : v ∈ V (G)}.
If we talk about the vertices in the same row or column, then we mean the vertices in such a
set. Let now G and H be two graphs with a linearly ordered vertex set. Then the �rst row
of the product graph means the vertex subset {(min(V (G)), w) : w ∈ V (H)}.
Let G = (V (G), E(G)) and H = (V (H), E(H)) be two vertex disjoint graphs, then the

union G ∪H is the graph (V (G) ∪ V (H), E(G) ∪ E(H)).

De�nition 2.35. [Har69] The join G ∗H of two graphs G = (V (G), E(G)) and H =
(V (H), E(H)) is the graph union G ∪H together with all the edges joining V (G) and V (H).

With the join of two graph we are able to de�ne the fan and the wheel.

De�nition 2.36. The join of a path Pn−1 and the K1 is called fan Fn (Fn ∼= Pn−1 ∗K1) and
the join of a cycle Cn−1 with the K1 is called wheel Wn (Wn

∼= Cn−1 ∗K1). Furthermore, the
join of edgeless graph En−1 with the K1 is called star Sn (Sn ∼= En−1 ∗K1).

Frucht and Harary introduced the corona of two graphs in 1970.

De�nition 2.37. [FH70] Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. Then
the corona of G and H is the graph G ◦H which is the disjoint union of G and |V (G)| copies
of H and every vertex v of G is adjacent to every vertex in the corresponding copy of H.

Fig. 2.12: Corona graph of the diamond and the K3.

2.4 Graph Polynomials

Let G be the set of �nite graphs and S some arbitrary set. Then graph invariants are functions
f : G → S such that for two graphs G and H

G ∼= H ⇒ f(G) = f(H).

In case of S being equal to {0, 1}, we speak of graph properties, e.g. connectivity, and in
the case of S = N of graph parameters, e.g. number of vertices or minimum degree. With the
de�nition of the graph invariants we are able to de�ne the graph polynomials.
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De�nition 2.38. Let G be the set of �nite graphs and R[x1, . . . xk] the polynomial ring over
the real numbers. Then a graph polynomial is a function P : G → R[x1, . . . xk] such that for
two graphs G and H

G ∼= H ⇒ P (G, x1, . . . , xk) = P (H,x1, . . . , xk).

In the following the coe�cients of the graph polynomials are always integers. We denote
by degxi(P ) the degree of the variable xi of the graph polynomial P (G, x1, . . . , xk). If the
polynomial has only one variable x, we write deg(P ) instead of degx(P ).

De�nition 2.39. Let P = P (G, x1, . . . , xk) =
∑

i1,...,ik

ai1,...,ikx
i1
1 . . . x

ik
k be a graph polynomial,

then
[xlj ]P =

∑
i1,...,ik
ij=l

ai1,...,ikx
i1
1 . . . x

ij−1

j−1 x
ij+1

j+1 . . . x
ik
k .

If P (G, x) is a graph polynomial with one variable x, then [xk]P (G, x) is the coe�cient
of xk in the polynomial. Furthermore, we simply write [xl1j1 . . . x

ll
jl

]P (G, x1, . . . , xk) instead of

[xl1j1 ](. . . ([xliji ]P (G, x1, . . . , xk)) . . . ).
In the following a short overview over some graph polynomials used in this thesis is pre-

sented. A more detailed overview can be found in [Kot12; Tri12a]. Figure 9.1 shows the
connection between di�erent graph polynomials. But this �gure shows only a part of the
�graph of graph polynomials� (this phrase and some parts of the �gure are introduced by
M. Trinks [Tri12a]). The �rst graph polynomial studied in the literature is the chromatic
polynomial χ(G, x). It was �rst de�ned by G. D. Birkho� [Bir12] and yields the number of
proper colorings of the graph with x colors.

De�nition 2.40. [DKT05] Let G = (V,E) be a graph and bk(G) be the number of partitions
of V in k independent vertex subsets. Then the chromatic polynomial χ(G, x) is de�ned as

χ(G, x) =
n∑
k=0

bk(G)xk,

where xk is the falling factorial xk = x(x− 1) . . . (x− (k − 1)).

The domination polynomial is the ordinary generating function for the number of domina-
ting sets of the graph. Let G = (V,E) be a graph andW ⊆ V be a vertex subset of the graph.
Then W is called a dominating set if and only if N [W ] = V . The domination polynomial was
introduced by J. Arocha and B. Liano [AL00].

De�nition 2.41. [AL00] Let G = (V,E) be a graph. Then the domination polynomial is
given by

D(G, x) =
∑
W⊆V

NG[W ]=V

x|W |.

A vertex subset X ⊆ V is a vertex-cover if e ∩X 6= ∅, for all e ∈ E.

De�nition 2.42. [Don+02] Let G = (V,E) be a graph. Then the vertex-cover polynomial
Ψ(G, x) of G is de�ned as

Ψ(G, x) =
∑
X⊆V

X is vertex-cover

x|X|.
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De�nition 2.43. [LM05] Let G = (V,E) be a graph. Then the independence polynomial
I(G, x) is the ordinary generating function for the number of independent sets of the graph:

I(G, x) =
∑
W⊆V

W is independent set

x|W |.

Lemma 2.44. [AO13] Let G = (V,E) be a graph, I(G, x) its independence polynomial and
Ψ(G, x) its vertex-cover polynomial. Then

Ψ(G, x) = xnI(G, 1/x).

An edge subset F ⊆ E is an edge-cover if
⋃
e∈F e = V .

De�nition 2.45. [AO13] Let G = (V,E) be a graph. Then the edge-cover polynomial E(G, z)
of the graph is de�ned as

E(G, z) =
∑
F⊆E

F is edge-cover

z|F |.

De�nition 2.46. [TAM11] Let G = (V,E) be a graph. Then the subgraph component
polynomial Q(G; v, x) is de�ned as

Q(G; v, x) =
∑
W⊆V

v|W |xk(G[W ]).

Let G = (V,E) be a graph and F ⊆ E be an edge subset, then rank of F is de�ned as
r(F ) = |V | − c(G〈F 〉).

De�nition 2.47. [Tut67] Let G = (V,E) be a graph. Then the rank polynomial R(G;x, y)
is de�ned as

R(G;x, y) =
∑
F⊆E

xr(F )y|F |−r(F ).

An other well-known polynomial is the Tutte polynomial.

De�nition 2.48. [Tut54; Tut67; Wel99] Let G = (V,E) be a graph with n vertices. Then the
Tutte polynomial is de�ned as

T(G;x, y) =
∑
F⊆E

(x− 1)r(E)−r(F )(y − 1)|F |−r(F ).

The Tutte polynomial has a lot of connections to other graph polynomials (e.g. see [Wel99]).
The next theorem shows two of these connections.

Theorem 2.49. [Tut54; Tut67; Wel99] Let G = (V,E) be a graph with n vertices. Then

R(G;x, y) = xn−c(G)T(G;x−1 + 1, y + 1)

χ(G, x) = (−1)n−c(G)xc(G)T(G; 1− x, 0).

De�nition 2.50. [BT12] Let G = (V,E) be a graph whose vertices fail independently of each
other with a constant probability 1− p. Then the residual network reliability R1(G, p) is the
probability that the surviving vertices induce a connected subgraph. The k-residual network
reliability Rk(G, p) is the probability that additionally at least k vertices are intact.
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2.5 Some Arrangements

We assume unless noted otherwise that all graphs in this thesis are simple. Let G = (V,E) be
a graph and W ⊆ V be a dominating vertex subset. In such a case we call all vertices of W
dominating and all vertices in the neighborhood of W dominated. Furthermore, sometimes
we make a proof by case distinction with respect to a certain vertex v. In such a proof we
simply say that the vertex v is either dominating or non-dominating, which means that we
distinguish between dominating sets in which the vertex v is either contained or not.
Let G = (V,E) be a graph and X ⊆ V be a vertex subset of G. Then, occasionally, we can

de�ne a polynomial f(G, x) under the condition that the vertices in X are already dominated.
In this sense, already dominated means that we count in the polynomial f(G, x) those vertex
subsets of the graph G+{X, · }u where the new vertex u is dominating and hence it dominates
all vertices in X. In other words, let A,B ⊆ V be vertex subsets, whereat only the vertices in
A can be dominating and only the vertices in B must be dominated. In case of the domination
polynomial we obtain:

D(G,A,B;x) =
∑
W⊆A

B⊆N [W ]

x|W |.

From this it follows that D(G, x) = D(G,V, V ;x). Furthermore, the domination polynomial
under the condition that the vertex subset X ⊆ V is already dominated is the polynomial

D(G,V, V \X;x). Analogously, this can be applied to other domination-related polynomials.
Furthermore, let 00 be equal one.
one step upwards in the tree and adding the father w
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3 The Domination Polynomial

The domination polynomial was introduced by Arocha and Liano [AL00] (see De�nition 2.41)
and it is extensively studied in the literature. Let di(G) be the number of the dominating
sets of size i in G, then the domination polynomial can also be represented as

D(G, x) =
n∑
i=1

di(G)xi.

In general, the calculation of the domination polynomial is ]W [2]-complete [FG04] and
therefore it is interesting to �nd graph classes in which the calculation can be done in poly-
nomial time. In the Sections 3.1 and 3.2 such special graph classes, e.g. product graphs,
are investigated. From the domination polynomial we can determine the size of a minimum
dominating set in the graph G. The size of such a minimum set of the graph is called the
domination number γ(G) of the graph G, or shortly

γ(G) = min{i : di(G) > 0}.

The domination number was intensively studied in the literature. Several papers for the
calculation of the domination number in general graphs and in special graph classes were
published (e.g. see [GKL06; Gra06; VRB08; Roo11]). The �rst theorem shows the calculation
of the domination polynomial of the join of two graphs.

Theorem 3.1. [DT12] Let G = (V (G), E(G)) and H = (V (H), E(H)) be two vertex-disjoint
graphs. Then the domination polynomial of the join of G and H can be calculated with

D(G ∗H,x) =
(

(1 + x)|V (G)| − 1
)(

(1 + x)|V (H)| − 1
)

+ D(G, x) + D(H,x).

Another polynomial which is related to the domination polynomial is the neighborhood
polynomial introduced by Brown and Nowakowski [BN08].

De�nition 3.2. [BN08] Let G = (V,E) be a graph. Then the neighborhood polynomial is
de�ned as

N(G, x) =
∑
U⊆V

∃u∈V \U :U⊆N(u)

x|U |.

The degree of the neighborhood polynomial is given by the maximum degree of the graph. A
vertex subset U is counted in the neighborhood polynomial if and only if in the complement of
the graph at least one vertex exists, such that the intersection between the closed neighborhood
of this vertex and the set U is empty.
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Lemma 3.3. Let N(G, x) be the neighborhood polynomial of the graph G and

N(G, x) =
∑
U⊆V

∃u∈V \U :U∩N [u]=∅

x|U |.

Then
N(G, x) = N(G, x).

The polynomial N(G, x) = N(G, x) counts the non-dominating sets in G and therefore the
next theorem follows.

Theorem 3.4. Let G = (V,E) be a graph, D(G, x) be the domination polynomial of G and
N(G, x) be the neighborhood polynomial of the complement of G. Then

D(G, x) + N(G, x) = (1 + x)n.

Proof. The theorem follows directly from Lemma 3.3.

For the calculation of the domination polynomial in general graphs, there are two possible
ways. The �rst way is to �nd recurrence equations and the second is to �nd representations
of the polynomial which allow a (faster) computation of the polynomial. In this scope Kotek
et al. [KPT13] introduced in 2013 the concept of the essential vertex subsets of a graph. A
vertex subset W ⊆ V is called essential if one vertex u ∈ V exists with N [u] ⊆ W . Let
Ess(G) be the set of all essential sets of the graph G. To calculate the domination polynomial
it is enough to sum over these essential sets.

Theorem 3.5. [KPT13] Let G = (V,E) be a graph. Then

D(G, x) = (−1)|V |
∑

W∈Ess(G)

(−1)|W |
(

(1 + x)|{v∈W |N [v]⊆W}| − 1
)
.

An open problem in the scope of the essential sets of a graph is to determine how many
essential sets has a given graph. Or more precisely: Can the number of essential sets of a
graph be bounded by some evaluations of the degree sequence, the minimum or maximum
degree? E.g. the complete graph has exactly one essential set (the whole vertex set) and the
complete bipartite graph Km,n has 2n + 2m − 3 essential sets.

Remark 3.6. The size of the smallest essential set equals δ(G) + 1.

As mentioned before, one interesting question about graph polynomials is: Does the graph
polynomial ful�ll some recurrence equations with respect to vertex or edge operations? Let
G = (V,E) be a graph and u be a vertex of G. Then pu(G) is the domination polynomial of
G − N [u] under the condition that all vertices in N(u) are dominated in G. Together with
this special domination polynomial Kotek et al. [Kot+12] proved the following theorem.

Theorem 3.7. [Kot+12] Let G = (V,E) be a graph and u ∈ V . Then

D(G, x) = D(G− u, x) + xD(G/u, x) + xD(G−N [u], x)− (1 + x)pu(G).

Kotek et al. also showed in their paper that the domination polynomial does not satisfy
any linear recurrence relation with the four vertex operations −v, /v, −N [v] and \N [v]. We
can use the same method to extend their result with one additional operation, namely }v.
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Theorem 3.8. Let G = (V,E) be an arbitrary graph and v be a vertex of this graph. Then for
the domination polynomial there exists no linear recurrence equation with the operations G−v,
G/v, G − N [v], G\N [v] and G } v. More precisely, no rational functions a, b, c, d, e ∈ R(x)
exist such that

D(G, x) = aD(G− v, x) + bD(G/v, x) + cD(G−N [v], x)

+ dD(G\N [v], x) + eD(G} v, x). (3.1)

Proof. Suppose now that there exist rational functions a, b, c, d and e such that (3.1) is ful�lled.
Let now the graphs Gi, for i ∈ {1, . . . , 6}, be the K2, K3, P3, K4, P4, and P5, respectively.
Now we apply the operations from the theorem to these graphs. In the complete graphs, the
vertex v is an arbitrary vertex of the graph. In the case of the P3 and the P5 we choose the
center vertex and in the case of P4 we choose the second to last vertex. Then we obtain the
Table 3.1.

G− v G/v G−N [v] G\N [v] G} v

K2 K1 K1 ∅ K1 K1

K3 K2 K2 ∅ K1 K1 ∪K1

P3 K1 ∪K1 K2 ∅ K1 K1 ∪K1

K4 K3 K3 ∅ K1 K1 ∪K1 ∪K1

P4 K2 ∪K1 P3 K1 K2 K2 ∪K1

P5 K2 ∪K2 P4 K1 ∪K1 P3 K2 ∪K2

Tab. 3.1: Simple graphs and some vertex operations.

For all graphs of the Table 3.1 we can calculate the domination polynomials and obtain
Table 3.2.

G− v G/v G−N [v] G\N [v] G} v

x2 + 2x x x 1 x x
(1 + x)3 − 1 x2 + 2x x2 + 2x 1 x x2

x3 + 3x2 + x x2 x2 + 2x 1 x x2

(1 + x)4 − 1 (1 + x)3 − 1 (1 + x)3 − 1 1 x x3

x2(x+ 2)2 x3 + 2x2 x3 + 3x2 + x x x2 + 2x x3 + 2x2

x5 + 5x4 + 8x3 + 3x2 (x2 + 2x)2 x2(x+ 2)2 x2 x3 + 3x2 + x (x2 + 2x)2

Tab. 3.2: Domination polynomials of some simple graphs.

The domination polynomials in Table 3.2 give us a system of linear equations. This system
has no rational solution for the variables a, b, c, d and e (this can be easily proved using
a computer algebra system), which is a contradiction to the assumption and therefore the
theorem is proved.

Kotek et al. [Kot+12] also showed that for the domination polynomial no recurrence equa-
tion exists with the deletion, contraction and extraction of an edge. But it is possible to prove
a theorem which uses a combination of vertex and edge operations, as follows.
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Theorem 3.9. [Kot+12] Let G = (V,E) be a graph and e = {u, v} ∈ E be an edge of G.
Then

D(G, x) = D(G− e, x) +
x

x− 1

[
D(G− e/u, x) + D(G− e/v, x)

−D(G/u, x)−D(G/v, x)−D(G−N [u], x)−D(G−N [v], x)

+ D(G− e−N [u], x) + D(G− e−N [v], x)
]
.

3.1 Graph Products

In literature we �nd a lot of papers about the domination number of product graphs (e.g. see
[Ala+11; Klo99a; Klo99b]), but almost no attention has been given to the domination poly-
nomial of graph products. Kotek et al. [KPT14] has investigated the domination polynomial
of Cartesian products. In this section we prove some results about the lexicographic product.
In most cases it is not possible to give formulas for graph products with two arbitrary graphs
and therefore we look for results for the case that some special graphs, e.g. the complete
graph, are involved.

Theorem 3.10. Let G = (V,E) be a graph with at least two vertices. Then the domination
polynomial of the lexicographic product of the graph G and the complete graph Kn (n ≥ 2) can
be calculated with

D(G ·Kn, x) = D(G, (1 + x)n − 1).

Proof. A vertex (v, w) of the product graph is adjacent to all vertices in the same row and to
all vertices in the row Ru if u ∈ NG(v). Hence, the theorem follows.

Theorem 3.11. Let G = (V,E) be a connected graph with m vertices and m,n ≥ 2. Then

D(Kn ·G, x) = (1 + x)nm − n(N(G, x)− 1)− 1.

Proof. A vertex (v, w) of the product graph is adjacent to all vertices outside the row Rv and
to some vertices of the row Rv depending on the neighborhood of w ∈ V (G) in G. Therefore,
every non-empty vertex subset of the product graph is a dominating set except of subsets
that only consist of vertices of one row and these vertices do not correspond to a dominating
set in G. These sets are counted by N(G, x)− 1 and the theorem follows.

Theorem 3.12. Let G = (V,E) be a graph with m vertices and m,n ≥ 2. Then the domi-
nation polynomial of the lexicographic product of the path Pn with the graph G can be calculated
with

D(Pn ·G, x) = D(G, x)fn−1 +
(
N(G, x)− 1

)
((1 + x)m − 1) fn−2 + gn−1.

fn denotes the domination polynomial of the graph Pn ·G under the condition that the �rst row
is already dominated and gn denotes the domination polynomial of Pn ·G under the condition
that in the �rst row at least one vertex is dominating.

Proof. Again, we can distinguish three possible cases with respect to the dominating vertices
in the �rst row: (1) The dominating vertices of the �rst row correspond to a dominating set
in G, (2) at least one vertex in the �rst row is dominating, but the dominating vertices in
the �rst row do not correspond to a dominating set in G and (3) no vertex in the �rst row is
dominating.
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1. If in the �rst row at least one vertex is dominating, then in the second row of the
product graph all vertices are dominated. The number of dominating sets of the �rst
row is counted by D(G, x) and the number of dominating sets of the remaining graph
with fn−1.

2. The number of non-dominating sets in the �rst row is counted by N(G, x) − 1. To
dominate the non-dominated vertices in the �rst row, there must be at least one vertex
in the second row dominating and therefore all vertices in the third row are dominated.

3. If in the �rst row no vertex is dominating, then in the second row at least one vertex
must be dominating.

The sum of the polynomials of the three cases yields the theorem.

Lemma 3.13. In compliance with the requirements of the previous theorem for the polynomials
fn (for n ≥ 2) and gn (for n ≥ 3) the following equations are valid:

fn = D(Pn−1 ·G, x) + ((1 + x)m − 1) fn−1,

gn = D(G, x)fn−1 +
(
N(G, x)− 1

)
((1 + x)m − 1) fn−2.

The initial conditions are

f1 = (1 + x)m,

g1 = D(G, x),

g2 = D(G, x)(1 + x)m +
(
N(G, x)− 1

)
((1 + x)m − 1) .

Proof. Analog to the proof of Theorem 3.12.

Theorem 3.14. Let G = (V,E) be a graph with m vertices, m ≥ 2. Then the domination
polynomial of the lexicographic product of the cycle Cn (n ≥ 4) with the graph G can be
calculated with

D(Cn ·G, x) = D(G, x)hn−1 + ln−1

+
(
N(G, x)− 1

) [
2((1 + x)m − 1)fn−3 + ((1 + x)m − 1)2hn−3

]
.

hn denotes the domination polynomial of the graph Pn · G under the condition that the �rst
and the last row is already dominated. Furthermore, ln denotes the domination polynomial of
the graph Pn ·G under the condition that in the �rst row at least one vertex or in the last row
at least one vertex is dominating.

Proof. Analog to the proof of Theorem 3.12.

Lemma 3.15. Let hn and ln be the polynomials de�ned in the last theorem, with n ≥ 2.
Furthermore, in, for n ≥ 5, denotes the domination polynomial of the graph Pn ·G under the
condition that at least one vertex in the �rst row and at least one vertex in the last row is
dominating. Then

hn = ((1 + x)m − 1)hn−1 + fn−1,

ln = 2in−1 + in,

in = D(G, x)2hn−2 + 2
(
N(G, x)− 1

)
D(G, x)((1 + x)m − 1)hn−3

+
(
N(G, x)− 1

)2
((1 + x)m − 1)2 hn−4.
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The initial conditions are

h1 = (1 + x)m,

i1 = D(G, x), i2 = ((1 + x)m − 1)2,

i3 = D(G, x)2h1 + (2
(
N(G, x)− 1

)
D(G, x) +

(
N(G, x)− 1

)2
) ((1 + x)m − 1) and

i4 = D(G, x)2h2 + 2
(
N(G, x)− 1

)
D(G, x)((1 + x)m − 1)h1

+
(
N(G, x)− 1

)2
((1 + x)m − 1)2 .

Proof. The proof of the recurrence equations for hn and in is analog to the proof of Theorem
3.12.
The polynomial ln is the domination polynomial of the graph Pn · G under the condition

that in the �rst row or in the last row at least one vertex is dominating. Therefore, we have
two cases: (1) Exactly in one of the two rows dominating vertices exist and (2) in both of
the two rows dominating vertices exist. The last case is counted by in. Suppose that in the
�rst row at least one vertex is dominating and in the last row no vertex is dominating. To
dominate the vertices in the last row, at least one vertex in the second to last row must be
dominating. This is counted with in−1. The sum of the two cases yields the theorem.

3.2 Special Graph Classes

In this section we investigate the domination polynomial of some special graph classes. For
several graph classes, results are published in the literature (e.g. see [AO09; AT10; DT12]).

3.2.1 Complete and Nearly Complete Graphs

If in a complete graph at least one vertex is dominating, then all other vertices are dominated.
This yields immediately the dominating polynomial of the complete graph

D(Kn, x) = (1 + x)n − 1.

Theorem 3.16. Let Kk
n = (V,E) be a simple k-bounded complete graph with n vertices of

the type Λ(Kk
n) = [n0, n1, n2, . . . , nl]. Then

D(Kk
n, x) =((1 + x)n0 − 1)(1 + x)n−n0

+
l−1∑
i=1

((1 + x)ni − 1)
l∏

j=i+1

(1 + x)nj − ((1 + x)ni − 1− xni)

+ xnl .

Proof. If at least one vertex of the clique of size n0 is dominating, then the remaining n− n0

vertices are dominated. This leads to the �rst part of the equation.
Let i ∈ {1, . . . , l− 1}, the vertices in V0, . . . , Vi−1 are non-dominating and at least one and

at most ni − 1 vertices are dominating in Vi. Then these vertices dominate all vertices in
V \Vi, but the non-dominating vertices in Vi will not be dominated. Therefore, at least one
vertex in Vi+1, . . . , Vl has to be dominating. This is counted by

((1 + x)ni − 1− xni)

 l∏
j=i+1

(1 + x)nj − 1

 .
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If in Vi all vertices are dominating, then all vertices are dominated and the vertices in the
vertex set V \Vi can either be dominating or not. This yields

xni

l∏
j=i+1

(1 + x)nj + xnl

and therefore the theorem follows.

Theorem 3.17. Let M ⊂ E be a perfect matching of the complete graph Kn = (V,E). Then

D(Kn −M,x) = (1 + x)n − 1− nx.

Proof. All vertex subsets of size greater or equal two are dominating sets.

Corollary 3.18. Let M ⊂ E be a matching of the complete graph Kn = (V,E) and m = |M |.
Then

D(Kn −M,x) = (1 + x)n−2m(1 + x)2m − 2mx− 1.

Theorem 3.19. Let G = (V,E) be a complete graph with k holes. Let ni be the size of the
i-th hole in the graph and mj =

∑j
i=1 ni, for j ∈ {1, . . . , k}. Then

D(G, x) = (1 + x)n−mk +

k∑
i=1

[(
(1 + x)n−mi − 1

)
((1 + x)ni − 1) + D(Cni , x)

]
− 1.

Proof. Apply Theorem 3.1 iteratively to the holes and the rest of the graph.

Theorem 3.20. Let G = (V,E) be a (n, k)-star. Then

D(Sn,k, x) = ((1 + x)k − 1)(1 + x)n−k + xn−k.

Proof. If at least one vertex in the start clique is dominating, then all other vertices are
dominated. This is counted by ((1 + x)k − 1)(1 + x)n−k. If all vertices in the start clique
are non-dominating, then every leaf-node must be dominating and therefore the theorem
follows.

3.2.2 Bipartite and Nearly Bipartite Graphs

Theorem 3.21. [AP09b] Let Kn,m = (X ∪ Y,E) be a complete bipartite graph with |X| = n
and |Y | = m. Then

D(Kn,m, x) = ((1 + x)n − 1)((1 + x)m − 1) + xm + xn.

Theorem 3.22. Let G be the graph obtained from a complete bipartite graph Kn,n = (X∪Y,E)
by removing all edges of a perfect matching M . Then

D(G, x) =nx2(1 + x)n−1

+

n∑
i=2

(
n

i

)
xi
[(

(1 + x)i − 1
)

(1 + x)n−i +
(
1 + x)n−i − 1− (n− i)x

)]
.

Proof. If in X exactly one vertex is dominating, then all but one vertices in Y are dominated.
Hence, this single vertex must also be dominating. This is counted by nx2(1 + x)n−1.
Let now W be the set of dominating vertices of X and let |W | = i, for i ∈ {2, . . . , n}.

Furthermore, let U = {u ∈ Y : ∃w ∈ W : {u,w} /∈ E(G)}. The vertices in W dominate all
vertices in Y . To dominate the n− i non-dominated vertices in X we have two possibilities:
At least one vertex in U is dominating or all vertices in U are non-dominating and in Y \U
at least two vertices are dominating. This yields the sum in the theorem.
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3.2.3 Paths and k-Paths

The following theorem gives a recurrence equation for the path Pn. This result can also be
obtained from Theorem 3.7.

Theorem 3.23. [AP09a] Let Pn be the path with n ≥ 4 vertices. Then

D(Pn, x) = x(D(Pn−1, x) + D(Pn−2, x) + D(Pn−3, x)),

with the initial conditions

D(P1, x) = x,

D(P2, x) = x2 + 2x,

D(P3, x) = x3 + 3x2 + x.

Proof. Let v be the second vertex of the path. Applying Theorem 3.7 we obtain

D(Pn, x) = D(Pn − v, x) + xD(Pn/v, x) + xD(Pn −N [v], x)− (1 + x)pu(Pn)

=xD(Pn−2, x) + xD(Pn−1, x) + xD(Pn−3, x).

We can generalize the recurrence equation for the path to the simple k-path.

Theorem 3.24. Let P
(k)
n be a simple k-path with n vertices (k ≥ 1 and n ≥ k + 2). Then

D(P (k)
n , x) = x

2k+1∑
i=1

D(P
(k)
n−i, x),

with the initial conditions

D(P
(k)
i , x) = 1, for i ≤ 0,

D(P
(k)
i , x) = (1 + x)i − 1, for i ∈ {1, . . . k + 1}.

Proof. The proof uses the same idea as the proof of Theorem 3.23.

Let D(P
(k)
n , x) be the domination polynomial of the simple k-path P

(k)
n . Then 2n D(P

(k)
n , 1)

yields the number of 01-words with length n, which contain no 2k + 1 zeros in a row and no
k + 1 leading and k + 1 trailing zeros.

3.2.4 Cycles and k-Cycles

Theorem 3.25. [DT12] Let Cn be a cycle with n ≥ 4 vertices. Then

D(Cn, x) = x(D(Cn−1, x) + D(Cn−2, x) + D(Cn−3, x)),

with the initial conditions D(C1, x) = x, D(C2, x) = x2 + 2x und D(C3, x) = x3 + 3x2 + 3x.

Lemma 3.26. Let Wn be a wheel with n ≥ 4 vertices. Then

D(Wn, x) = D(Cn−1, x) + x(1 + x)n−1.
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Proof. If the center vertex of the wheel is dominating, then all other vertices are dominated
and they can either be dominating or not. This will be counted by x(1 + x)n−1. If the center
vertex is non-dominating, then the dominating vertices of the cycle must form a dominating
vertex set.

Theorem 3.27. Let Cn be a cycle with at least �ve vertices. Then

D(Cn, x) = (1 + x)n − 1− nx− nx2.

Proof. Every vertex subset of size at least three is a dominating vertex set. A vertex subset of
size two is non-dominating if the two vertices are adjacent and have a common non-adjacent
vertex. In the Cn we have n possibilities to choose such a vertex subset. Hence, the theorem
follows.

We can generalize the recurrence equation for the cycle to the k-cycle.

Theorem 3.28. Let C
(k)
n be a k-cycle with n vertices (k ≥ 1 and n ≥ 2k + 2). Then

D(C(k)
n , x) = x

2k+1∑
i=1

D(C
(k)
n−i, x),

with the initial condition

D(C
(k)
i , x) = (1 + x)i − 1, for i ∈ {1, . . . 2k + 1}.

Proof. The proof uses the same idea as the proof of Theorem 3.25 (see [DT12]).

Let D(C
(k)
n , x) be the domination polynomial of the k-cycle. Then 2n D(C

(k)
n , 1) yields the

number of cyclic 01-words of length n ≥ 2k + 1, which contains no subword with 2k + 1
consecutive zeros. For these numbers W. Moser proved following theorem.

Theorem 3.29. [Mos93] Let Lw(n) be the number of cyclic words consisting of zeros and
ones, which contains no w + 1 zeros in series. Then

Lw(n) =


2n, if n ∈ {1, . . . , w}
2n − 1, if n = w + 1

Lw(n− 1) + · · ·+ Lw(n− 1− w) + n− 2(w + 1), if w + 2 ≤ n ≤ 2w + 1

Lw(n− 1) + · · ·+ Lw(n− 1− w), if n ≥ 2w + 2.

Corollary 3.30. Let D(C
(2)
n , x) be the domination polynomial of the 2-cycle. Then 2n D(C

(2)
n , 1)

yields the nth pentanacci number with initial conditions a(0) = 5, a(1) = 1, a(2) = 3, a(3) = 7,
a(4) = 15 (series A074048 of �The On-Line Encyclopedia of Integer Sequences� [OEI14]).

3.2.5 Trees

The calculation of many graph polynomials can be done in polynomial time when restricted
to the class of trees. In this section, �rst we present a general algorithmic approach to calcu-
late graph polynomials in trees and then we specify it for the calculation of the domination
polynomial. Let T = (V,E) be a tree and v ∈ V be an arbitrary vertex of the tree. Let Tv
be the rooted tree obtained from T with the root v and let T vu be the rooted subtree (with
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respect to the root v) with the root u of the subtree and all descendants of u. Let now Pu be
a vector with n graph polynomials for the subtree T vu as elements. These graph polynomials
have some special properties with respect to the vertex u. The idea is to start the calculation
beginning with the leaves of the tree Tv and going upwards in the tree until we reach the
root. For these upward steps, we need two operations: The �rst is the ⊕-operation. By this
operation we are going one step upwards in the tree and adding the father w of the vertex u
and the edge {u,w}. The second operation is the ⊗-operation. By this operation we merge
two P -vectors of the same vertex. In Figure 3.1 we see a tree with the root 4 and the cor-
responding calculation steps. In the algorithm, the vector of the root v will be calculated in
the last step. This gives the graph polynomial for the whole tree.

1 2

3

4

5

⊗

⊗

→

←
→

←

⊕ ⊕

⊕ ⊕

Fig. 3.1: Rooted tree with root 4 and the corresponding calculation steps.

To prove the correctness of such an algorithm, it is necessary to show that the initial
assignments to the leaves, the two operations and the �nal calculation of the polynomial in
the root of the tree are correct. The running time of such an algorithm depends mainly on
the two operations ⊕ and ⊗. Let O(⊕) and O(⊗) be the complexity of the two operations.
Then the complexity of the whole algorithm is O(mO(⊕) + nO(⊗)).

Now we specify the operations to calculate the domination polynomial. We assign to every
vertex u of the tree a vector with three components. We denote the i-th component of Pu
with P iu. The �rst component P 1

u yields the domination polynomial of the subtree T vu under
the condition that the vertex u is dominating, the second component P 2

u under the condition
that the vertex u is non-dominating, but it will be dominated from at least one son. The third
component P 3

u yields the domination polynomial under the condition that u and all its sons
are non-dominating. Additionally, this polynomial counts non-dominating sets in the subtree
T vu , which are dominated sets in T vu − u. Let v ∈ V be the root and u ∈ V be a leaf of the
tree. We assign to u the vector

Pu =

x0
1

 .

If we go one step upwards in the tree, the new vertex w can either be dominating or not.
If it is dominating, then it dominates its son. If it is non-dominating, then only if the son is
dominating or it is already dominated, we can obtain a dominating set. This yields

Pu ⊕ w = Pw =

x(P 1
u + P 2

u + P 3
u )

P 1
u

P 2
u

 .
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Let now w be a vertex of the tree with two sons and Pw and Qw be the two vectors calculated
for w from its sons. Now we merge these two vectors

Pw ⊗Qw =

P 1
w(Q1

w/x+Q3
w) +Q1

wP
3
w

P 2
wQ

2
w + P 2

wQ
3
w + P 3

wQ
2
w

P 3
wQ

3
w

 .

The sum of the �rst two components of the vector of the root yields the domination poly-
nomial of the whole tree.

3.3 The Domination Reliability Polynomial

Now we want to look at the domination problem from the reliability point of view. We
are interested in the probability that in a graph with random failing vertices or edges, a
dominating set (with some properties) exists. In this section we only show some possible
directions for further research. Assume that the vertices of the graph are dominating with a
given probability p and the edges are perfectly reliable.
Let G = (V,E) be a graph whose vertices fail randomly and independently with a given

probability qv, for all v ∈ V . A failure in the context of domination means, that the vertex
is not in the dominating set. In such a graph we are interested in the reliability that a
dominating set exists. If we assume that q = qv, for all v ∈ V , and p = 1 − q, then we can
de�ne the domination reliability polynomial as

DRel(G, p) = (1− p)|V |
∑
W⊆V

N [W ]=V

(
p

1− p

)|W |
.

The domination reliability polynomial was �rst introduced by Dohmen and Tittmann
[DT12]. They also showed that the domination polynomial and the domination reliability
polynomial are equivalent.

Theorem 3.31. [DT12] Let G = (V,E) be a graph whose vertices fail randomly and inde-
pendently with equal probability q = 1− p. Then

D(G, x) = (1 + x)|V |DRel

(
G,

x

1 + x

)
and

DRel(G, p) = (1− p)|V |D
(
G,

p

1− p

)
.

For more results and properties of the domination reliability polynomial we refer the inter-
ested reader to the paper of Dohmen and Tittmann [DT12].
Assume now that the edges of the graph are subject to random failure and the vertices are

perfectly reliable. First we ask for the probability that a given vertex subset is dominating.



42 3 The Domination Polynomial

De�nition 3.32. Let G = (V,E) be a graph. Suppose now that the edges fail randomly and
independently with the probability q = 1 − p. Then the edge failure domination reliability
polynomial EDRel(G,A, p) is the probability that the vertex subset A ⊆ V is dominating in
G:

EDRel(G,A, p) = (1− p)|E|
∑
F⊆E

NG〈F 〉[A]=V

(
p

1− p

)|F |
.

It follows directly from the de�nition that only the edges in δA are necessary for the
calculation of EDRel(G,A, p). Hence, the edge failure domination reliability equals zero if at
least one vertex exists which is not in the neighborhood of A.

Theorem 3.33. Let G = (V,E) be a graph and A ⊆ V . Then

EDRel(G,A, p) =
∏

v∈V \A

(1− q|NG(v)∩A|).

Proof. From every vertex in V \A at least one edge to a vertex in A must be intact. The term
1− q|NG(v)∩A| yields this probability for one vertex v ∈ V \A.

Theorem 3.33 shows that the edge failure domination reliability can be calculated in poly-
nomial time with respect to the number of vertices of the graph.
In the context of domination problems in graphs with failing edges, a lot of interesting

questions exist. So, one may ask how is the probability that in a graph with random failing
edges a dominating set with at most k, for 1 ≤ k ≤ n − 1, vertices exist? One can also
add some restrictions on the dominating sets, e.g. they must be perfectly dominating (every
dominated vertex is dominated from exactly one vertex). It is also possible to relax the
domination condition and introduce d-dominating vertex sets (a vertex subset W ⊆ V is
called d-dominating if every vertex in V \W has a distance of at most d from a vertex in W ).
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4 The Independent Domination Polynomial

A vertex subset W of a graph G = (V,E) is called independent dominating if N [W ] = V
and |W | = iso(G[W ]). The independent dominating number γi(G) is the minimum size of an
independent dominating set of the graph G. A survey of recent results of the independent
domination number is given by Goddard and Henning in [GH13]. In this chapter we investigate
the independent domination polynomial, which is the ordinary generating function for the
number of independent dominating sets in a graph.

De�nition 4.1. Let G = (V,E) be a simple graph and dik(G) be the number of independent
dominating sets of size k in G. Then the independent domination polynomial is de�ned as

Di(G, x) =

n∑
k=1

dik(G)xk.

The independent domination polynomial Di(G, x) can be obtained from the trivariate do-
mination polynomial Y(G;x, y, z) (see Equation (5.7) on page 79). Like many other graph
polynomials, the independent domination polynomial is multiplicative with respect to the
components of the graph (which also follows from the connection to the trivariate domination
polynomial).

Lemma 4.2. Let G = (V,E) be a graph with two components G1 = (V1, E1) and G2 =
(V2, E2). Then

Di(G, x) = Di(G1, x) Di(G2, x).

Proof. The proof of the lemma follows directly from the de�nition of the polynomial.

Theorem 4.3. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. Then we obtain
the following equation for the join of the two graphs.

Di(G ∗H,x) = Di(G, x) + Di(H,x).

Proof. Every independent set in G dominates all vertices in H and vice versa. If S ⊆ V (G) is
independent set but not a dominating set, then all vertices in H are adjacent to the vertices in
S and therefore the set S cannot be extended to an independent dominating set with vertices
of H. Hence, the theorem follows.

Theorem 4.4. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs and n = |V (G)|.
Then

Di(G ◦H,x) = Di(H,x)n I

(
G,

x

Di(H,x)

)
.

Proof. Every independent vertex subset of G can be extended to an independent dominating
set in G ◦ H. Let S ⊆ V (G) be an independent set in G, |S| = k and H1, . . . ,Hn−k the
n − k copies of H which are non-adjacent to vertices of S in G ◦H. Then for all arbitrary
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independent dominating sets Si ⊆ V (Hi), i ∈ {1, . . . , n− k}, the set S ∪ S1 ∪ · · · ∪ Sn−k is an
independent dominating set in G ◦H.
Let ik be the coe�cient of xk in I(G, x). Then

n∑
k=0

ikx
k Di(H,x)n−k = Di(H,x)n

n∑
k=0

ikx
k Di(H,x)−k

and therefore the theorem follows.

Corollary 4.5. Let G = (V,E) be a graph and Er be an edgeless graph with r vertices. Then

Di(G ◦Er, x) = xrn I(G, x
1−r).

It is also possible to prove a nice formula for the r-expansion of a graph.

De�nition 4.6. [GH13] Let G = (V,E) be a graph. Then the r-expansion exp(G, r) is the
graph obtained from G by replacing every vertex v ∈ V with an independent set Iv of size r
and replacing every edge {u, v} ∈ E with a complete bipartite graph with the bipartite sets Iu
and Iv.

Theorem 4.7. Let G = (V,E) be a graph and exp(G, r) be the r-expansion of it. Then

Di(exp(G, r), x) = Di(G, x
r).

Proof. LetW ⊆ V be an independent dominating set in G. Then in exp(G, r), all r vertices in
Iw, for w ∈W , must be dominating and all vertices in Iu, for u ∈ V \W , are non-dominating
because of the complete bipartite graphs between the vertices in Iw and Iu. Hence, every
independent dominating set in G can be expanded to exactly one independent dominating set
in exp(G, r) and vice versa.

Theorem 4.8. Let G = (V,E) be a connected graph with at least two vertices. Then∑
W⊆V

(−1)|W |Di(G[W ], x) = 1.

Proof. The proof follows the proof in [KPT13] with some minor changes. First of all, we
insert the de�nition of the independent domination polynomial in the equation and change
the order of the summation.∑

W⊆V
(−1)|W |Di(G[W ], x) =

∑
W⊆V

(−1)|W |
∑
U⊆W

NG[W ][U ]=W

iso(G[U ])=|U |

x|U |

=
∑
U⊆V

iso(G[U ])=|U |

x|U |
∑

W :U⊆W
NG[W ][U ]=W

(−1)|W |

=
∑
U⊆V

iso(G[U ])=|U |

x|U |
∑

W :U⊆W⊆NG[W ][U ]

(−1)|W | (4.1)

=
∑
U⊆V

iso(G[U ])=|U |

x|U |
∑

W :U⊆W⊆NG[U ]

(−1)|W | (4.2)
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=
∑
U⊆V

iso(G[U ])=|U |

(−x)|U |
∑

Y⊆NG(U)

(−1)|Y |

= 1.

In Equation (4.1) we sum over all vertex subsets W such that U is an independent domi-
nating set in G[W ]. The condition W ⊆ NG[W ][U ] in Equation (4.1) guarantees that we sum
only over subsetsW such that U is a dominating set in G[W ]. Hence, in the inner sumW can
be every subset from NG[U ]. With these considerations we obtain Equation (4.2). Because of
the fact that U is included in every subset W of the inner sum, the summation is performed
only over vertex subsets included in NG(U) and (−1)|U | is factored out from the inner sum.
The second sum vanishes for every set U which is not equal V or ∅ and therefore we obtain
the theorem.

Remark 4.9. Let G = ({v}, ∅) be a graph with one vertex. Then∑
W⊆V

(−1)|W |Di(G[W ], x) = 1− x.

If an arbitrary graph has more than one component we obtain the following corollary as a
consequence of Theorem 4.8 and Remark 4.9.

Corollary 4.10. Let G = (V,E) be a graph. Then∑
W⊆V

(−1)|W |Di(G[W ], x) = (1− x)iso(G).

Applying Möbius inversion to Corollary 4.10 yields the next corollary.

Corollary 4.11. Let G = (V,E) be a graph. Then

Di(G, x) =
∑
W⊆V

(−1)|W |(1− x)iso(G[W ]).

The previous corollary yields a formula to calculate the coe�cients of the independent
domination polynomial.

Corollary 4.12. Let G = (V,E) be a graph with n vertices. Then

Di(G, x) =

n∑
k=0

xk
∑
W⊆V

iso(G[W ])≥k

(−1)|W |+k
(

iso(G[W ])

k

)
.

Proof. Using the Corollary 4.11, we obtain

Di(G, x) =
∑
W⊆V

(−1)|W |(1− x)iso(G[W ])

=
∑
W⊆V

(−1)|W |
iso(G[W ])∑
k=0

(
iso(G[W ])

k

)
(−x)k
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=
n∑
k=0

(−x)k
∑
W⊆V

(−1)|W |
(

iso(G[W ])

k

)

=

n∑
k=0

xk
∑
W⊆V

iso(G[W ])≥k

(−1)|W |+k
(

iso(G[W ])

k

)
.

De�nition 4.13. Let G = (V,E) be a graph and W be a vertex subset of the graph. The set
W is called i-essential if W contains the open neighborhood of at least one vertex of V \W .
We denote the family of i-essential sets of G by Essi(G):

Essi(G) = {X ⊆ V : ∃v ∈ V \X : N(v) ⊆ X}.

Theorem 4.14. Let G = (V,E) be a graph with n vertices. Then

Di(G, x) = (−1)n
∑

U⊆Essi(G)

(−1)|U |
(

(1− x)|{v∈V \U |NG(v)⊆U}| − 1
)
.

Proof. Using complements with respect to V in the sum of Corollary 4.11 yields:

Di(G, x) =
∑
W⊆V

(−1)|W |(1− x)iso(G[W ])

=
∑
U⊆V

(−1)|V \U |(1− x)iso(G[V \U ])

= (−1)n
∑
U⊆V

(−1)|U |(1− x)|{v∈V \U |NG(v)⊆U}|

= (−1)n
( ∑
U⊆Essi(G)

(−1)|U |(1− x)|{v∈V \U |NG(v)⊆U}| +
∑
U⊆V

|{v∈V \U |NG(v)⊆U}|=0

(−1)|U |
)
.

The second sum equals a constant term and therefore the �rst sum provides the independent
domination polynomial with some additional constant terms. Hence, it is enough to subtract
the constant factor in the �rst sum.

Lemma 4.15. Let G = (V,E) be a graph. Then

min
W∈Essi(G)

{|W |} = δ(G)

and

N(v) ∈ Essi(G), v ∈ V.

Proof. Suppose there exists a set U in Essi(G) with |U | < δ(G). Then a vertex v with
N(v) ⊆ U in G exists. But if such a vertex exists, then it has a degree less than δ(G), which
is a contradiction.
The second equation follows from the fact that for every vertex v in G the open neighbor-

hood of this vertex is the smallest subset which ful�lls the essential set condition.
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The following lemma �nds usage in the calculation of the independent domination polyno-
mial.

Lemma 4.16. Let G = (V,E) be a graph and W,U ⊆ V be vertex subsets of G. If W is
an independent dominating set of the graph G and W ⊂ U , then U is not an independent
dominating set.

Proof. LetW ⊆ V be an independent dominating set of the graph, then every vertex in V \W
is adjacent to a vertex in W . Therefore, every vertex subset W ∪ {v}, for v ∈ V \W , has at
least one adjacent pair of vertices and hence it is not independent in G.

Corollary 4.17. Let G = (V,E) be a graph and S be the partial ordered set (P(V ),⊆). Then
the set of the independent dominating sets of G is an anti-chain in S.

Theorem 4.18. Let G = (V1 ∪ V2 ∪ {v}, E) be a graph and v /∈ V1 ∪ V2 be an articulation of
G. Furthermore, let V1 ∩ V2 = ∅, W1 = N(v) ∩ V1 6= ∅ and W2 = N(v) ∩ V2 6= ∅, such that
there is no edge between a vertex of V1 and a vertex of V2 in G. Then

Di(G, x) =xDi(G1 −N [v], x) Di(G2 −N [v], x)

+
∑

W⊆W1∪W2
W 6=∅

iso(G[W ])=|W |

(−1)|W |+1x|W |Di(G1 −N [W ], x) Di(G2 −N [W ], x).

Proof. If the articulation v is dominating, then all adjacent vertices are dominated and they
cannot be dominating. Therefore, this case will be counted by xDi(G−N [v], x). If the vertex
v is not dominating, then at least one neighbor must be dominating. But these vertices must
also form an independent set in G. With the principle of inclusion-exclusion and Lemma 4.2
the theorem follows.

Corollary 4.19. Let G = (V1∪V2∪{v}, E) be a graph, v an articulation of G and V2 ⊂ N(v).
Then

Di(G, x) = xDi(G1 −N [v], x) + Di(G1, x) Di(G2, x).

Proof. The �rst part of the sum follows directly from the �rst part of the sum in Theorem
4.18. If the articulation is non-dominating, then at least one vertex in G2 must be dominating.
Hence, the articulation will be dominated from the dominating vertices in G2 and the theorem
follows.

4.1 Recurrence Equations

De�nition 4.20. Let G = (V,E) be a graph and u ∈ V . Then piu(G) is the independent
domination polynomial of G−N [u] under the condition that all vertices in N(u) are dominated
from a vertex in G−N [u].

Remark 4.21. Let G = (V,E) be a graph and v ∈ V . Then

piv(G, x) = piv(G� v, x). (4.3)

Theorem 4.22. Let G = (V,E) be a graph and v be a vertex of the graph. Then

Di(G, x) = Di(G− v, x)− piv(G) + xDi(G−N [v], x).
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Proof. If the vertex v is dominating, then it dominates all vertices in the neighborhood and
these vertices cannot be dominating. This case will be counted by xDi(G − N [v], x). If
the vertex v is not dominating, then at least one vertex in N(v) must be dominating. The
polynomial Di(G − v, x) counts these independent dominating sets, but it also counts those
sets where no vertex is dominating in N(v). Therefore, we must subtract the polynomial for
these cases to obtain the theorem.

Corollary 4.23. Let G = (V,E) be a graph, u, v ∈ V and N(u) ⊆ N(v). Then

Di(G, x) = Di(G− v, x)− xpiv(G−N [u]) + x2 Di(G−N [v]− u, x).

Corollary 4.24. Let G = (V,E) be a graph, u, v ∈ V and N(u) = N(v). Then

Di(G, x) = Di(G− v, x) + (x2 − x) Di(G−N [v]− u, x).

Theorem 4.25. Let G = (V,E) be a graph and v ∈ V . Then

Di(G, x) = Di(G− v, x) + Di(G� v, x)−Di(G} v, x).

Proof. To prove the theorem we use the idea of the proof of Theorem 5.22. Applying Equations
(4.3) to Theorem 4.22 yields

Di(G, x)−Di(G− v, x) =xDi(G−N [v], x)− piv(G)

=xDi(G−N [v], x)− piv(G� v). (4.4)

Now applying Theorem 4.22 to the graph G� v leads to

Di(G� v, x)−Di((G� v)− v, x) =xDi((G� v)−N [v], x)− piv(G� v). (4.5)

The Equations (4.4) and (4.5) together yield the theorem.

The graph G ◦ v can be obtained from the graph G by removing v and adding a loop to
every neighbor of v. A loop in the context of domination means that the vertex dominates
itself. If a vertex v has a loop, then v ∈ N(v). Therefore Di(G ◦ v, x) is the independent
domination polynomial of the graph G − v under the condition that no vertex in N(v) is
dominating. Together with Theorem 4.22 we obtain the following corollary.

Corollary 4.26. Let G = (V,E) be a graph (loops allowed) and v be a vertex of the graph.
Then

Di(G, x) =

{
xDi(G−N [v], x) + Di(G− v, x)−Di(G ◦ v, x), if v /∈ N(v)

Di(G− v, x)−Di(G ◦ v, x), otherwise.

It is also possible to prove a theorem which yields a recurrence equation for the deletion of
an edge in the graph.

Theorem 4.27. Let G = (V,E) be a graph and e = {u, v} be an edge of the graph. Then

Di(G, x) = Di(G− e, x)−x2 Di(G−N [u, v], x) +xDi(G ◦ v−N [u], x) +xDi(G ◦u−N [v], x).
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Proof. Every independent dominating set from G is an independent dominating set in G− e,
except for some sets where either u or v are dominating. On the other hand, both vertices
u and v can be dominating in G − e, but not in G. Hence, we must subtract x2 Di(G −
N [u, v], x). Suppose now that only one of these two vertices is dominating and no vertex in
the neighborhood of the other vertex is dominating. This situation will be counted in the
graph G but not in the graph G− e. Therefore, we must add the polynomial for this case and
the theorem follows. Note that xDi(G◦v−N [u], x) is the independent domination polynomial
under the condition that the vertex u is dominating and no vertex in the neighborhood of v
(except for u) is dominating.

Corollary 4.28. Let G = (V,E) be a graph, e = {u, v} be an edge of the graph and N [u] =
N [v]. Then

Di(G, x) = Di(G− e, x) + (2x− x2) Di(G−N [u], x).

4.2 Non-Isomorphic Graphs

An interesting question is: How well does the independent domination polynomial distin-
guishes non-isomorphic graphs? This is of interest especially in comparison to the domi-
nation polynomial and the independence polynomial. Figure 4.1 shows the smallest pair of
non-isomorphic connected graphs G1 and G2 with the same independent domination polyno-
mial. These two graphs also have the same independence polynomial, but di�erent domination
polynomials:

Di(G1, x) = Di(G2, x) = x3 + 2x2

I(G1, x) = I(G2, x) = x3 + 5x2 + 5x+ 1

D(G1, x) = x5 + 5x4 + 8x3 + 3x2

D(G2, x) = x5 + 5x4 + 9x3 + 4x2

Fig. 4.1: The smallest pair of non-isomorphic graphs with the same independent domination polynomial.

In the case of trees, Figure 4.2 shows two non-isomorphic trees with ten vertices with the
same independent domination polynomial. It can be shown by computer research that this
is the smallest non-isomorphic pair. They also have the same independence polynomial, but
not the same domination polynomial. In [DPT03] Dohmen, Pönitz and Tittmann gave a pair
of non-isomorphic trees having the same independence polynomial but di�erent independent
domination polynomials and di�erent domination polynomials.
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Fig. 4.2: The smallest pair of non-isomorphic trees with the same independent domination polynomial.

4.3 Graph Products

4.3.1 Cartesian Product

Theorem 4.29. Let H be a simple graph with n vertices and Km be a complete graph with
m ≥ ∆(H) + 1 vertices. Then

Di(H�Km, x) = χ(H,m)xn.

Proof. It is enough to show that every proper coloring withm colors of the graph H represents
an independent dominating set in H�Km and vice versa. Let C : V (H) → {1, . . . ,m} be
such a proper coloring and let c(v) be the color of the vertex v ∈ H. Then the vertex subset
{(v, c(v)) : ∀v ∈ V (H)} is an independent dominating set of H�Km. Every independent
dominating set can also be represented by a proper coloring because of the fact that in every
row exactly one vertex is dominating and no adjacent vertices are dominating. The number
of proper colorings with m colors is given by the evaluation of the chromatic polynomial and
therefore the theorem follows.

The following three corollaries are a direct consequence of this theorem.

Corollary 4.30. Let Kn and Km be two complete graphs and let n ≤ m. Then

Di(Kn�Km, x) = mnxn.

Remark 4.31. Di(Kn�Km, 1) is the number of dominating non-attacking rooks on a n×m-
chessboard.

Corollary 4.32. Let Kn be a complete graph with n vertices, n ≥ 3, and Pm be a path with
m vertices. Then

Di(Kn�Pm, x) = n(n− 1)m−1xm.

Corollary 4.33. Let Kn be a complete graph with n ≥ 3 vertices and Cm be a cycle with
m ≥ 2 vertices. Then

Di(Kn�Cm, x) = ((n− 1)m + (−1)m(n− 1))xm.

The independent domination polynomials of the product Kn�Pm and Kn�Cm have nice
combinatorial interpretations. The independent domination polynomial of the �rst product
yields the number of words of length m with n letters and no two adjacent identical letters.
In case of the product Kn�Cm, also the �rst and the last letter are di�erent. For n = 4, this
sequence can be found as A218034 in the OEIS [OEI14].
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Theorem 4.34. Let H be a simple graph with m vertices and Kn be a complete graph with
n ≤ ∆(H) vertices. Assume H has an unique vertex v with N [v] = V (H) and deg(w) ≤ n−1,
for all w ∈ V (H)\{v}. Then

Di(Kn�H,x) = χ(H,n)xm + xm−1
n−1∑
k=0

(−1)k
(
n

k

)
χ(H − v, n− k).

Proof. The independent dominating sets of size m are counted by χ(H,n). But it is also
possible to �nd independent dominating sets of size m− 1 which do not include the vertices
(x, v). More precisely, the vertices (x, v), for all x ∈ {1, . . . , n}, are dominated if at least one
vertex in every set {(x, u) : u ∈ NH(v)}, for all x ∈ {1, . . . , n}, is dominating. The evaluation
of the chromatic polynomial χ(H − v, n) yields the number of ways to color the vertices in
V (H)\{v} with n colors. But now we count also those colorings where no vertex is chosen
from {(x, u) : u ∈ NH(v)} for some x ∈ {1, . . . , n}. With the principle of inclusion-exclusion,
the theorem follows.

The last two theorems have some restrictions to the maximum degree in the graph H.
Therefore, it would be useful to have a more general version of these theorems. The next two
theorems yield the independent domination polynomial of the product graphs K2�H and
K3�H, respectively, for which H is an arbitrary graph.

Theorem 4.35. Let K2 be a complete graph with two vertices and H = (V,E) be a graph
with n, n ≥ 2, vertices. Then

Di(K2�H,x) =
∑
W⊆V
W 6=∅
W ind.

V \NH [W ] ind.

xn−|NH(W )|Di(H −W −NH [V −NH [W ]], x).

Proof. Let W and U = V \NH [W ] be independent vertex subsets of H. Then the vertices in
the sets {(1, w) : w ∈ W} and {(2, u) : u ∈ U} dominate all vertices in the product graph
except for the vertices in {(2, v) : v ∈ NH(W )\NH(U)}. These are exactly those vertices in
the second row, which are not adjacent to the vertices in {(2, u) : u ∈ U}. Therefore, any
independent dominating set of these vertices together with the vertices in W and U form an
independent dominating set in K2�H.

It is possible to generalize the idea of the last theorem to products of a K3 with an arbitrary
graph.

Theorem 4.36. Let K3 be a complete graph with three vertices, H be a non-empty graph with
n, n ≥ 3, vertices and N [W ] = NH [W ]. Then

Di(K3�H,x) =
∑
W⊆V
W 6=∅
W ind.

xn−|N(W )|
∑

U⊆V \N [W ]
U ind.

(V \N [W ])\U ind.

∑
Z⊆N(W )\N(U)

Z∪U ind.
(Y \N [Z])∪X ind.

x|Z|+|Y \N [Z]|×

×Di(H[N(W )− Z −N [X]−N [Y −N [Z]], x),

with X = (V \N [W ])\U and Y = N(W )\N(U).
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Proof. The idea of the theorem is to choose a non-empty independent set W in the �rst row
of the product graph. The vertices in W are the only dominating vertices in the �rst row
(see Figure 4.3). The non-dominated vertices in the �rst row are dominated by the vertices
in the sets U and X in the second resp. third row. From the subset Y = N(W )\N(U)
of the non-dominated vertices in the second row, we choose again an independent subset Z,
which has the property that the vertex subset Y \N [Z] is also an independent set. The only
vertices which now are non-dominated are the vertices in the third row, which are in N(W )
and adjacent to Z, but not adjacent to Y \N [Z]. For the induced subgraph of these vertices,
we calculate the independent domination polynomial and the theorem follows.

K3�H

H

H

H

W N(W )

U
Z

N
(Z

)

X

Y \N [Z]

Fig. 4.3: Illustration of the proof of Theorem 4.36.

In the case of Pm�Pn, not much is known about independent dominating sets, but it is
already known (see [Weic]) that the independence number of such products is simply

α(Pm�Pn) =
⌈mn

2

⌉
.

The calculation of the independent domination number is much more complicated. There are
only few easy cases known. If m = 3, then we have (see [Cor91])

γi(P3�Pn) = 2

⌊
n− 2

2

⌋
+ 2.

To prove a recurrence equation for the independent domination polynomial of the product
graph P3�Pn, we distinguish which vertices in the last column are dominating. The �rst
observation is that at least one vertex in the last column must be dominating. If this is
not the case these three vertices cannot be dominated by an independent dominating set. If
the vertex (1, n) is dominating, then the vertices (1, n − 1) and (2, n) are dominated. The
remaining graph will be denoted by G1

n (see Figure 4.4(a)). If the vertex (2, n) is dominating,
then the vertices (1, n), (3, n) and (2, n − 1) are dominated. The remaining graph will be
denoted by G2

n−1 (see Figure 4.4(b)). If the vertices (1, n) and (3, n) are dominating, then
the vertices (1, n− 1), (2, n) and (3, n− 1) are dominated and this graph will be denoted by
G3
n−1 (see Figure 4.4(c)).
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n
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n

(d) G4
n

Fig. 4.4: Graphs G1
n, G

2
n, G

3
n and G4

n

This case distinction leads directly to a recurrence equation for the independent domination
polynomial:

Di(P3�Pn, x) = 2xDi(G
1
n, x) + xDi(G

2
n−1, x) + x2 Di(G

3
n−1, x). (4.6)

The following theorem provides recurrence equations for the graphs G1
n, G

2
n and G3

n.

Lemma 4.37. Let G1
n, G

2
n and G3

n be the graphs de�ned above and the graph G4
n be obtained

from the graph P3�Pn by deleting the vertex (3, n) (see Figure 4.4(d)). Then

Di(G
1
n, x) =x

(
Di(G

3
n−1, x) + Di(G

4
n−2, x)

)
,

Di(G
2
n, x) =x2

(
Di(G

3
n−1, x) + 2 Di(G

4
n−2, x) + Di(G

3
n−2, x)

)
,

Di(G
3
n, x) =x

(
Di(G

2
n−1, x) + Di(G

2
n−2, x)

)
,

Di(G
4
n, x) =x

(
Di(G

4
n−1, x) + Di(G

2
n−1, x)

)
.

The initial conditions are

Di(G
1
3, x) =x4 + 3x2,

Di(G
2
1, x) =x2, Di(G

2
2, x) = x3 + 3x2,

Di(G
3
1, x) =x, Di(G

3
2, x) = x3 + x,

Di(G
4
1, x) =2x.

Proof. We use again case distinction for the four types of graphs.
G1
n: If the vertex (3, n) is dominating, then the vertex (3, n− 1) is dominated. This leads

to xDi(G
3
n−1, x). If the vertex (3, n) is non-dominating, then the vertex (3, n − 1) must be

dominating. This case will be counted with xDi(G
4
n−2, x).

G2
n: Notice that exactly one of the vertices (1, n) and (1, n − 1) and exactly one of the

vertices (3, n) and (3, n − 1) must be dominating. There are four possible choices of two
vertices which ful�ll these conditions. These di�erent choices lead to the recurrence equation
for this special graph.
G3
n: If the vertex (2, n) is dominating, then the vertex (2, n − 1) is dominated and the

remaining graph is the graph G2
n−1. Therefore, this case will be counted by xDi(G

2
n−1, x). If

the vertex (2, n) is non-dominating, then the vertex (2, n − 1) must be dominating. In this
case the vertices (1, n − 1), (2, n − 2), (2, n) and (3, n − 1) are dominated and this will be
counted by xDi(G

2
n−2, x).

G4
n: Notice that exactly one of the two vertices (1, n) and (2, n) must be dominating. If

the vertex (1, n) is dominating, then the vertices (1, n− 1) and (2, n) will be dominated and
this will be counted by xDi(G

4
n−1, x). If the vertex (2, n) is dominating, then the vertices

(1, n) and (2, n − 1) are dominated. This leads to the graph G2
n−1 and will be counted by

xDi(G
2
n−1, x).
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In the Equation (4.6) the independent domination polynomial of the graph G1
n can be

replaced with the equation in the previous lemma. This provides a recurrence equation which
only depends on the graphs G2

n, G
3
n and G4

n:

Di(P3�Pn, x) = x2 Di(G
3
n−1, x) + xDi(G

2
n−1, x) + 2x2 Di(G

4
n−2, x).

The problem with this method is that for larger m the recurrence equations get more
complicated and it is therefore not practicable for such cases.

4.3.2 Tensor Product

The �rst theorem provides an equation for the independent domination polynomial of the
tensor product of two complete graphs.

Theorem 4.38. Let Kn and Km be two complete graphs. Then

Di(Km ×Kn, x) = mxn + nxm.

Proof. If a vertex of the graph is dominating, then all vertices are dominated except for the
vertices in the same row and column of the chosen vertex. Let (v, w) be this dominating vertex.
It is only possible to choose an additional dominating vertex in the row Rv or the column
w. If we choose a vertex in the row Rv, then all vertices in the column w are dominated.
Therefore, all non-dominated vertices in the row Rv must be dominating. So we have m ways
to choose a column with n vertices and n ways to choose a row with m vertices.

The second result is about the product of a path with a complete graph. Let Gmn be the
graph obtained from the product graph Pn−1 ×Km by adding an additional vertex which is
adjacent to all but one vertices in the �rst row (see Figure 4.5).

Theorem 4.39. Let Pn be a path with n vertices, n ≥ 4, and Km be a complete graph with
m vertices (m ≥ 2). Then

Di(Pn ×Km, x) = xm Di(Pn−2 ×Km, x) + xm Di(Pn−3 ×Km, x) +mx2 Di(G
m
n−2, x),

with the initial conditions

Di(P1 ×Km, x) = xm and Di(P2 ×Km, x) = mx2 + 2xm.

Proof. If no vertex is dominating in the �rst row, then in the second row at least two vertices
must be dominating and therefore all vertices in the third row are dominated. The non-
dominated vertices in the second row can only be dominated by themselves. This leads to the
term xm Di(Pn−3 ×Km, x). If all vertices are dominating in the �rst row, then all vertices in
the second row are dominated. This yields the term xm Di(Pn−2 ×Km, x). If in the �rst row
exactly one vertex is dominating, then in the second row all but one vertices are dominated,
but this one non-dominated vertex must be dominating. Otherwise, the remaining vertices in
the �rst row cannot be dominated. The single dominating vertex in the second row dominates
all but one vertices in the third row. The remaining graph is the graph Gmn−2.

A recurrence equation for the independent domination polynomial of the graphGmn is proved
in the following.
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Fig. 4.5: The graph G5
4.

Lemma 4.40. Let Gmn be the graph just de�ned, n ≥ 4 and m ≥ 2. Then

Di(G
m
n , x) = xDi(G

m
n−1, x) + (m− 1)x2 Di(G

m
n−3, x) + xm Di(Pn−3 ×Km, x),

with the initial conditions

Di(G
m
1 , x) = x and Di(G

m
2 , x) = x2 + xm.

Proof. The proof uses the same idea as the proof of Theorem 4.39.

We can use the same idea to prove a result for the product Cn × Km, which is slightly
more complex. For this equation, we need some special graphs again. Let Hm

n be the graph
constructed from the graph Pn−2 × Km by adding two additional vertices u and v, which
are adjacent to all but one vertices in the �rst and the last row, respectively. The two non-
adjacent vertices are in the same column of the product graph (see Figure 4.6). The graph
Imn is constructed in the same way except for the fact that the two non-adjacent vertices of u
and v in the �rst and the last row are not in the same column.

u

v

u

v

Fig. 4.6: The graphs H5
5 (left) and I55 (right).

Theorem 4.41. Let Cn be a cycle with n vertices (n ≥ 7) and Km be a complete graph with
m vertices (m ≥ 2). Then

Di(Cn ×Km, x) =2xm Di(Pn−3 ×Km, x) + x2m Di(Pn−6 ×Km, x)

+mx2
[
2(m− 1)x2 Di(I

m
n−5, x) + Di(H

m
n−2, x) + 2xm Di(G

m
n−5, x)

]
.

Proof. The proof uses the same idea as the proof of Theorem 4.39.
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Lemma 4.42. Let Hm
n and Imn be the graphs just de�ned. Furthermore, let n ≥ 4 and m ≥ 2.

Then

Di(H
m
n , x) =xDi(H

m
n−1, x) + xm Di(G

m
n−3, x) + (m− 1)x2 Di(I

m
n−3, x),

Di(I
m
n , x) =xDi(I

m
n−1, x) + xm Di(G

m
n−3, x)

+ (m− 2)x2 Di(I
m
n−3, x) + x2 Di(H

m
n−3, x),

with the initial conditions

Di(H
m
1 , x) = 0, Di(H

m
2 , x) = x2,

Di(I
m
1 , x) = 1 and Di(I

m
2 , x) = 2x.

Proof. The proof uses the same idea as the proof of Theorem 4.39.

The tensor product of two connected graphs is sometimes non-connected. Weichsel proved
the following theorem in 1962, which yields a characterization for such non-connected product
graphs.

Theorem 4.43. [Wei62] Let G and H be connected graphs. The graph G×H is connected if
and only if either G or H contains an odd cycle. The graph G×H has exactly two components
if G and H are bipartite.

The following lemma is a consequence of this theorem.

Lemma 4.44. [Klo99a] The tensor product Pn × Pk, n, k ≥ 2, consists of two components.
Moreover, if k = 2, the components consist of two paths of length n. If both k and n are
odd, these components are not isomorphic. If at least one of these two numbers is even, the
components are isomorphic.

A direct consequence of the previous lemma is that the independent domination polynomial
of Pn and P2 can be calculated by

Di(Pn × P2, x) = Di(Pn, x)2.

For the product Pn × P3 we distinguish two cases. If n is odd, then the �rst component,
denoted by G

′′
n, consists of bn2 c connected cycles (see the blue vertices in Figure 4.7(a)) and

the second component, denoted by G
′′′
n , consists of bn3 c connected cycles and four additional

hanging vertices (see the red vertices in Figure 4.7(a)). If n is even, then the two components
are isomorphic and consist of bn3 c connected cycles and two additional hanging vertices (see

Figure 4.7(b)). Such a component will be denoted by G
′
n.

First we prove recurrence equations for these three di�erent graphs.

Lemma 4.45. Let G
′
n, G

′′
n and G

′′′
n be the graphs just de�ned, with n ≥ 4 and m ≥ 2. Then

Di(G
′
n, x) =xDi(G

′
n−2, x) + x2 Di(G

′′′
n−3, x),

Di(G
′′
n, x) =xDi(G

′′
n−2, x) + x2 Di(G

′
n−3, x),

Di(G
′′′
n , x) =x2 Di(G

′′′
n−2, x) + xDi(G

′
n−3, x).

The initial conditions are

Di(G
′
2, x) = Di(P3, x) = x2 + x,

Di(G
′′
3 , x) = Di(C4, x) = 2x2,

Di(G
′′′
1 , x) =x2,

Di(G
′′′
3 , x) = Di(S5, x) = x5 + x.
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

(a) Tensor product P5 × P3

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

(b) Tensor product P6 × P3

Fig. 4.7: Tensor products of two paths.

Proof. The proof uses the same idea as the proof of Theorem 4.39.

Lemma 4.45 together with the previous considerations yields the following theorem.

Theorem 4.46. Let Pn be a path with n vertices (n ≥ 2). Then

Di(Pn × P3, x) =

{
Di(G

′
n, x)2, if n is even

Di(G
′′
n, x) Di(G

′′′
n , x), otherwise.

4.3.3 Lexicographic Product

Theorem 4.47. Let G and H be graphs. Then

Di(G ·H,x) = Di(G,Di(H,x)).

Proof. Let W ⊆ V (G) be an independent dominating set in G. Then the set W ′ = {(w, 1) :
w ∈ W} dominates all vertices in {(v, u) : v ∈ V (G)\W,u ∈ V (H)} and {(w, v) : w ∈ W, v ∈
NH [1]}. Let I ⊆ V (H) be an independent dominating set in H. Now we construct the setW ′′

from W ′ by replacing the vertex (v, 1) ∈W ′ with the vertices (v, w), for w ∈ I. This set W ′′
is an independent dominating set in the product graph and every independent dominating set
can be constructed in this way. Therefore, the theorem follows.

A direct consequence of the last theorem is the following corollary. This result can also be
found in [NR96].

Corollary 4.48. Let G and H be graphs. Then

γi(G ·H,x) = γi(G)γi(H) and

α(G ·H,x) = α(G)α(H).

Corollary 4.49. Let G = (V,E) be a graph and Kn be the complete graph with n vertices.
Then

Di(G ·Kn, x) = Di(G,nx).

Corollary 4.50. Let G = (V,E) be a graph and Kn be the complete graph with n vertices.
Then

Di(Kn ·G, x) = nDi(G, x).
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For the product of Pn and Cn with an arbitrary graph G, it is also possible to prove
recurrence equations with respect to smaller product graphs.

Remark 4.51. The independent domination polynomial Di(Pn ·G, x) equals one for n = 0.

Theorem 4.52. Let G = (V,E) be a graph and Pn the path with n ≥ 3 vertices. Then

Di(Pn ·G, x) = Di(G, x) (Di(Pn−2 ·G, x) + Di(Pn−3 ·G, x)) .

Proof. If at least one vertex of the �rst row is in the dominating set, then it dominates all
vertices in the next row and there cannot be a dominating vertex in this row. If the dominating
vertices of the �rst row only form a partial dominating set with respect to the vertices of this
row (one copy of G), then the non-dominated vertices in the �rst row cannot be dominated
because all neighbors of these vertices are adjacent to an already dominating vertex. This
case will be counted by Di(G, x) Di(Pn−2 ·G, x). If there is no dominating vertex in the �rst
row, then these vertices can only be dominated by a vertex of the second row. Therefore, the
dominating vertices in the second row must be an independent dominating set. This will be
counted by Di(G, x) Di(Pn−3 ·G, x) and the theorem follows.

Theorem 4.53. Let G = (V,E) be a graph and Cn be the cycle with n vertices (n ≥ 6). Then

Di(Cn ·G, x) = Di(G, x) (2 Di(Pn−3 ·G, x) + Di(G, x) Di(Pn−6 ·G, x)) .

Proof. If the vertices in the �rst row form an independent dominating set, then all vertices in
the second and in the last row are dominated. This case is counted by Di(G, x) Di(Pn−3 ·G, x).
If no vertex is dominating in the �rst row, then at least one vertex in the second or the last
row must be dominating. If the vertices in the second row form an independent dominating
set, then all vertices in the �rst and in the third row are dominated. This case is again counted
by Di(G, x) Di(Pn−3 ·G, x). The last case is that in the �rst and in the second row no vertex
is dominating. Then at least one vertex in the last row and at least one vertex in the third
row must be dominating. This yields Di(G, x) Di(Pn−6 ·G, x) and the theorem follows.

4.3.4 Strong Product

Klobu£ar [Klo05] showed that the independent domination number of the strong product of
two paths γi(Pm�Pn) is equal to dm3 ed

n
3 e and the independence number α(Pm�Pn) is equal

to dm2 ed
n
2 e. If m and n are odd, then the number of maximal independent dominating sets is

equal to one. This follows directly from the results in [Klo05].

Theorem 4.54. Let G = (V,E) be a graph and Kn be the complete graph with n vertices.
Then

Di(Kn �G, x) = Di(G,nx).

Proof. The proof is analog to the proof of Theorem 4.47 and the Corollary 4.49.

4.4 Special Graph Classes

As mentioned before, the calculation of the independent domination polynomial can be done
easily in some special graph classes. The independent domination polynomial of the edgeless
graph En is simply xn and for the complete graph, it is given by

Di(Kn, x) = nx. (4.7)
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Theorem 4.55. Let G = (V,E) be a graph obtained from a complete graph Kn by removing
all edges of a matching M of size k. Then

Di(G, x) = (n− 2k)x+ kx2.

Proof. There are n − 2k vertices in the graph G of degree n − 1 and therefore each of these
vertices dominates the other vertices of the graph. This is counted by (n− 2k)x. If a vertex
incident to a matching edge is dominating, then this vertex dominates all vertices of the graph
except for the other vertex of the matching edge. Therefore, this vertex has to be dominating
and we have k possibilities to choose such a pair.

Theorem 4.56. Let Kpq = (V1 ∪ V2, E) be a complete bipartite graph. Then

Di(Kpq, x) = xp + xq.

Proof. If at least one vertex is dominating in V1, then all vertices are dominated in V2. Hence,
all vertices in V1 must be dominating so that they are a dominating set in the graph. The
same argumentation holds if at least one vertex in V2 is dominating.

Corollary 4.57. Let G = (V,E) be a graph obtained from a complete bipartite graph Kpq by
removing all edges of a matching M of size k. Then

Di(G, x) = xp + xq + kx2.

Simple k-paths form another interesting graph class. If a vertex in a simple k-path is do-
minating, then it dominates the next k and the k vertices before this vertex in the path.
Therefore, exactly one of the �rst k + 1 vertices has to be dominating. Let pkn be the inde-
pendent domination polynomial of the k-path with n vertices. Then

pkn = x
k+1∑
i=1

pkn−k−i.

Formally, we de�ne that pkn = 1 for all n ≤ 0. As a consequence of the previous equation,
we obtain a recurrence equation for the independent domination polynomial of the path.

Corollary 4.58. Let G = (V,E) be the path Pn with at least four vertices. Then

Di(Pn, x) = xDi(Pn−2, x) + xDi(Pn−3, x).

The initial conditions are

Di(P1, x) = x,

Di(P2, x) = 2x and

Di(P3, x) = x2 + x.

We can use the standard method to solve a recurrence equation and obtain

G(z) =
xz + 2xz2 + xz3

1− xz2 − xz3
.

If x is equal one, this function simpli�es to

G(z) = −z
3 + 2z2 + z

z3 + z2 − 1
.
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The series a(n), listed as A000931 in the On-Line Encyclopedia of Integer Sequences
[OEI14], counts the number of compositions of n in parts that are odd and greater than
or equal to three. Moreover a(n) is also the number of strings of length n− 8 from an alpha-
bet {A,B} with no more than one A or two B's consecutively. Now taking the generating
function of the series A000931

H(z) =
1− z2

1− z2 − z3

and shifting the series by six yields

1

z6

(
1− z2

1− z2 − z3
− 1− z3 − z5 − z6

)
= −z

3 + 2z2 + z

z3 + z2 − 1
.

This result is equal to the generating function G(z). Therefore, we can use the explicit
formula for a(n+ 3) posted by Paul Barry [OEI14]

a(n+ 3) =

bn
2
c∑

k=0

(
k

n− 2k

)
to obtain a formula for the number of independent dominating sets of the path Pn:

Di(Pn, 1) =

b(n+3)/2c∑
k=1

(
k

n− 2k + 3

)
.

There is also a more explicit formula for a(n) given by Keith Schneider [OEI14]. Using this
formula, we obtain:

Di(Pn, 1) =
rn+6

2r + 3
+

sn+6

2s+ 3
+

tn+6

2t+ 3
, (4.8)

where r, s, t are the three roots of x3 − x− 1.
Moreover, we can use these ideas to obtain an explicit formula for the independent domi-

nation polynomial of the path Pn:

Di(Pn, x) =

b(n+3)/2c∑
k=1

(
k + 1

n− 2k + 1

)
xk. (4.9)

Because of the fact that the binomial coe�cient is zero for some of the k's, we can restrict
the range of the summation. The two inequalities

k + 1 ≥ n− 2k + 1⇔ k ≥ n

3
and

n− 2k + 1 ≥ 0⇔ k ≤ n+ 1

2

lead to

Di(Pn, x) =

b(n+1)/2c∑
k=dn/3e

(
k + 1

n− 2k + 1

)
xk.

We can use the polynomial of the path Pn to prove a theorem for the cycle Cn.

Theorem 4.59. Let G = (V,E) be the cycle Cn (n ≥ 5). Then

Di(Cn, x) = 2xDi(Pn−3, x) + x2 Di(Pn−6, x).
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Proof. We number the vertices of the cycle as 1, . . . , n. If the vertex 1 of the cycle is domina-
ting, then its two neighbors 2 and n are dominated and they cannot be dominating. This case
will be counted by xDi(Pn−3, x). If the vertex 1 is not dominating, then one of its neighbors
must be dominating. If the vertex 2 is dominating, then the �rst vertex is dominated and
the vertex n can either be dominating or not. This case will be counted by xDi(Pn−3, x). If
the vertices 1 and 2 are non-dominating, then the vertices 3 and n must be dominating. This
yields the last part of the sum and the theorem is proved.

Using Equation (4.9) yields

Di(Cn, x) =

bn−2
2
c∑

k=0

(
2

(
k + 2

n− 2k − 4

)
+

(
k + 1

n− 2k − 5

))
xk+2.

Lemma 4.60. Let G = (V,E) be a wheel graph Wn with n vertices (n ≥ 4). Then

Di(Wn, x) = x+ Di(Cn−1, x).

Proof. If the center vertex is dominating, then all other vertices are dominated. If the center
vertex is non-dominating, then every independent dominating set of the vertices of the cycle
is an independent dominating set of the whole graph.

Lemma 4.61. Let G = (V,E) be a fan graph Fn with n vertices (n ≥ 3). Then

Di(Fn, x) = x+ Di(Pn−1, x).

Proof. The proof uses the same argumentation as the proof of Lemma 4.60.

4.4.1 Trees

First we investigate some special trees, which are well known in the literature and have some
nice properties. In this section, also an algorithm for arbitrary trees will be given.

The centipede Cenn was introduced by Levit and Mandrescu [LM05] and it is a tree obtained
by the union of a path Pn and the edgeless graph En together with n edges connecting every
vertex of the path with exactly one vertex of the En and vice versa (see Figure 4.8). Levit and
Mandrescu proved a recurrence equation for the independence polynomial and it is already
known [Weib] that the rank polynomial of the centipede is

R(Cenn, x, y) = (1 + x)2n.

Fig. 4.8: The Centipede Cen5.

If the �rst vertex of the path is dominating, then it dominates its adjacent pendant vertex
and the second vertex of the path. Therefore, the adjacent pendant vertex of the second
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vertex must be dominating. If the �rst vertex of the path is non-dominating, then its adjacent
pendant vertex must be dominating. These two cases together yields

Di(Cenn, x) = xDi(Cenn−1, x) + x2 Di(Cenn−2, x)

with the initial conditions Di(Cen0, x) = 1 and Di(Cen1, x) = 2x.
Solving this recurrence equation yields

Di(Cenn, x) =
(5− 3

√
5)(1−

√
5)n + (5 + 3

√
5)(1 +

√
5)n

2n+15
xn.

Please note that Di(Cenn, 1) is the number of binary sequences of length n that have no
consecutive zeros. This sequence is the well known Fibonacci sequence (for more information
see the series A000045 in the On-Line Encyclopedia of Integer Sequences [OEI14]).
In a certain sense, a generalization of the centipede is the �recracker. An (n, k)-�recracker

Fn,k, n, k ≥ 2, is a graph obtained by the concatenation of n stars Sk by linking one leaf from
each, such that the linked leaves form a (induced) path Pn in Fn,k (see Figure 4.9). If k is
equal to two, then Fn,2 ∼= Cenn. Please note that the independent domination polynomial of
the star Sk is x+ xk−1.

v

Fig. 4.9: Firecracker F5,4.

Theorem 4.62. Let Fn,k be a (n, k)-�recracker with n ≥ 2 and k ≥ 3. Then

Di(Fn,k, x) = (x2k−3 + xk) Di(Fn−2,k, x) + xDi(Fn−1,k, x) + (x3k−5 + x2k−2) Di(Fn−3,k, x),

with the initial conditions

Di(F0,k, x) = 1,

Di(F1,k, x) = x+ xk−1 and

Di(F2,k, x) = 2x2k−3 + 2xk + x2.

Proof. Suppose that the �rst vertex in the induced Pn is dominating (the vertex v in Figure
4.9), then the center vertex of the corresponding star is dominated and the remaining k − 2
vertices must be dominating. In the second star one leaf is dominated and therefore we have
to multiply the polynomial of this case with Di(Sk−1, x) = x+xk−2. This yields the �rst part
of the sum in the theorem.
If the �rst vertex of the path is non-dominating, then it either can be dominated by the

center vertex of the corresponding star or only by the second vertex of the path. In the �rst
case, the center vertex has to be dominating and all vertices of the �rst star are dominated.
In the second case, the second vertex in the path dominates the �rst and the third vertex and
the center vertex of the second star. Therefore, we have two non-dominated stars with k − 1
vertices and k − 2 isolated vertices, together with the rest of the �recracker. This yields the
last part of the sum of the theorem.
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An (n, k)-banana tree Bn,k is a graph obtained by connecting one leaf of each of the n
copies of a star Sk with a single root vertex which is distinct from all the stars (see Figure
4.10). For k equal to one the (n, 1)-banana tree is isomorphic to the star Sn+1. The rank
polynomial of the (n, k)-banana tree is [Weia]

R(Bn,k;x, y) = (1 + x)nk.

Fig. 4.10: Banana tree B3,4.

Theorem 4.63. Let Bn,k be a (n, k)-banana tree, with n ≥ 1 and k ≥ 2. Then

Di(Bn,k, x) = xDi(Sk−1, x)n + Di(Sk, x)n − xn.

Proof. If the root is dominating, then in every star one vertex is dominated and we have
n remaining stars with k − 1 vertices. If the root is non-dominating, then we calculate the
product of the independent domination polynomial of the n stars. But we also counted the
case that the center vertex is dominating in all stars and therefore the root of the banana
tree will not be dominated. Hence, we have to subtract the polynomial of this case and the
theorem follows.

Like for other graph polynomials, the calculation of the independent domination polynomial
of arbitrary trees can be done very fast. The �rst step is to transform the tree into a rooted
tree and then calculate the vector Pu with three components for every vertex of the tree (see
Section 3.2.5). The �rst component of Pu is the independent domination polynomial under
the condition that the vertex u is dominating and all vertices lower than u are independently
dominated. The second component of the vector is the polynomial under the condition that
the vertex u is non-dominating, but u is dominated from a child. The last component is
the polynomial under the condition that u is non-dominating and is not dominated from a
child. The sum of the �rst two components of the P -vector of the root yields the independent
domination polynomial of the tree.
It remains to specify the two operations of the tree algorithm (see Section 3.2.5). If we go

one step upwards (⊕), then we add the vertex w and the edge {u,w}. The vertex w can only
be dominating if the vertex u is not dominating. Therefore, P 1

w = P 2
u +P 3

u . If the vertex w is
dominated but non-dominating, then the vertex u must be dominating and hence P 2

w = P 1
u .

If the vertex w is non-dominating and non-dominated, then the vertex u must be dominated
and therefore P 3

w = P 2
u .

Let now w be a vertex with two child vertices u and v and let Ṗw be the vector for w
obtained from u and P̈w the vector obtained from v. If the vertex w is a dominating vertex,
then it must be a dominating vertex in both branches. If w is dominated, then at least one
child must be a dominating vertex. If w is neither dominating nor dominated by another
vertex, we must multiply the two possible cases.



64 4 The Independent Domination Polynomial

Pw = Ṗw ⊗ P̈w =

 xṖ 1
wP̈

1
w

Ṗ 2
wP̈

2
w + Ṗ 2

wP̈
3
w + Ṗ 3

wP̈
2
w

Ṗ 3
wP̈

3
w

 .

4.5 Independent Domination Reliability

Like for other counting problems, it makes sense to look for corresponding problems in the
reliability context. Doing this, we �nd two di�erent perspectives. The �rst point of view is
that all vertices of the graph are dominating with a given probability p and the edges are
perfectly reliable. On the other hand, we can assume that the edges of the graph are subject
to random failure and we ask for the probability that an independent dominating set with (at
most) k vertices exists. In this thesis, we only investigate the �rst case.

De�nition 4.64. Let G = (V,E) be a graph whose vertices are subject to random and inde-
pendent failure with probability q = 1 − p and |V | = n. Then the independent domination
reliability polynomial is de�ned as

DReli(G, p) =

n∑
k=1

dik(G)pk(1− p)n−k.

According to this de�nition, the independent domination reliability polynomial is equivalent
to the independent domination polynomial. With q = 1− p we obtain

DReli(G, p) = qn Di(G, p/q). (4.10)

On the other hand we can obtain the independent domination polynomial from the reliability
polynomial with

Di(G, x) = (1 + x)n DReli(G, x/(1 + x)). (4.11)

The independent domination reliability function is not s-shaped as it is typical for many
reliability functions, e.g. all-terminal reliability. Figure 4.11 shows the independent domi-
nation reliability polynomials of the diamond graph, the path P5 and the Petersen graph.
This shape is a consequence of the fact that if all vertices are dominating, then the resulting
dominating set is not an independent set in the graph. Therefore, one interesting property is
the maximum point of the function. More precisely, which value of p gives the highest inde-
pendent domination reliability of the graph? The second interesting question in this context
is whether it is possible to approximate the value of the independent domination reliability
polynomial at p = 0.5. An approximation of this value together with Equation (4.11) yields
an approximation for the number of independent dominating vertex subsets in the graph.
The �rst simple observation is that if the graph G is connected, then DReli(G, 0) = 0

and DReli(G, 1) = 0. Moreover, this is also correct if the graph G has at least one covered
component.
Let now DReli(G, p)

′ be the �rst derivation of the independent domination reliability poly-
nomial with respect to p.

Lemma 4.65. Let Kn be the complete graph with n vertices and DReli(Kn, p) its independent
domination reliability polynomial. Then 1/n is a root of the �rst derivation DReli(Kn, p)

′,

DReli(Kn, 1/n) =
(
1− 1

n

)n−1
and

lim
n→∞

DReli(Kn, 1/n) = e−1.
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p
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

Fig. 4.11: Reliability functions of the diamond graph (red), the path P5 (black) and the Petersen graph (blue).

Proof. Equation (4.7) together with Equation (4.10) yields

DReli(Kn, p) = np(1− p)n−1.

If we randomly choose a vertex subset W of the Kn, such that p is the probability that a
single vertex is in this set. Then the expected number of chosen vertices E(|W |) is pn. In
a complete graph, only the vertex subsets of size one are the independent dominating sets.
The expected number of chosen vertices is equal to one if p = 1/n. Now inserting p = 1/n in
DReli(Kn, p) results in the theorem.

In case of the complete bipartite graph the situation is more complex. For some complete
bipartite graphs the reliability function has the expected shape, e.g. for the K3,3 and the
K3,4. But if the sizes of the two bipartite sets are highly unbalanced, the reliability function
has a local minimum at p = 0.5 and a maximum in each of the two intervals (0, 0.5) and
(0.5, 1) (see Figure 4.12).

p
0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

Fig. 4.12: Reliability functions of the K3,3 (red), the K3,4 (black) and the K3,7 (blue).

Lemma 4.66. The independent domination reliability polynomial DReli(Km,n, p) is symmet-
ric at p = 0.5 in the interval [0, 1] for all m,n ≥ 2.

Proof. The Theorem 4.56 together with Equation (4.10) yields

DReli(Km,n, p) = pn(1− p)m + pm(1− p)n.
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Inserting in the polynomial the two points 0.5− r and 0.5 + r, r ∈ [0, 0.5], yields

(0.5 + r)n(1− (0.5 + r))m + (0.5 + r)m(1− (0.5 + r))n

= (0.5 + r)n(0.5− r)m + (0.5 + r)m(0.5− r)n

and

(0.5− r)n(1− (0.5− r))m + (0.5− r)m(1− (0.5− r))n

= (0.5− r)n(0.5 + r)m + (0.5− r)m(0.5 + r)n.

The two equations are equal and therefore the lemma follows.

Theorem 4.67. The independent domination reliability polynomial DReli(Km,n, p) has a
maximum at p = 0.5 if and only if

1 ≤ m < 3 and 1 ≤ n ≤ 1 + 2m

2
+

√
1 + 8m

2

or

m ≥ 3 and
1 + 2m

2
−
√

1 + 8m

2
≤ n ≤ 1 + 2m

2
+

√
1 + 8m

2
.

Proof. The �rst derivation of DReli(Km,n, p) is

d

dp
DReli(Km,n, p) = m(1− p)npm−1 −m(1− p)m−1pn − n(1− p)n−1pm + n(1− p)mpn−1

and the second derivation is

d

dp2
DReli(Km,n, p) =m(m− 1)(1− p)npm−2 +m(m− 1)(1− p)m−2pn

− 2nm(1− p)n−1pm−1 − 2nm(1− p)m−1pn−1

+ n(n− 1)(1− p)n−2pm + n(n− 1)(1− p)mpn−2.

Inserting p = 0.5 in the �rst derivation yields DReli(Km,n, 0.5)′ = 0 and in the second
derivation resolves in

DReli(Km,n, 0.5)′′ =
(
8m2 − 16nm− 8m+ 8n2 − 8n

)
2−m−n.

This value can either be positive or negative, depending on the values of m and n. Solving
the inequality DReli(Km,n, 0.5)′′ < 0 leads to the theorem.

The star graph Sn is a special complete bipartite graph K1,n−1 and therefore the statements
about the symmetry and the extremal points at p = 0.5 are valid.

Corollary 4.68. Let DReli(Sn, p) be the independent domination reliability polynomial of the
star Sn. Then this polynomial is symmetric at p = 0.5 in the interval [0, 1], for all n ≥ 2, and
it has its maximum at p = 0.5 if 2 ≤ n ≤ 4.
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5 The Total Domination Polynomial

The concept of total domination in graphs was introduced by Cockayne, Dawes and Hedet-
niemi in 1980 [CDH80]. Some results about the total dominating set of a graph can be found
in the two books of Haynes, Hedetniemi and Slater [HHS98b; HHS98a] and in a survey of
Henning [Hen09]. Pfa� et al. [PLH83] showed that the decision problem whether an arbitrary
graph has a total dominating set of a given size is NP-complete, even for bipartite graphs. The
total domination polynomial was �rst introduced by Vijayan and Kumar [VK12b] in 2012.
But in literature only some partial results about the total domination polynomial of cycles
and paths are known [VK12a; VK12c].

De�nition 5.1. A vertex subset W ⊆ V is called a total dominating set if N(v)∩W 6= ∅ for
all v ∈ V .

It is also possible to de�ne the total dominating sets with the total open neighborhood of
a vertex subset. A vertex subset W ⊆ V is total dominating if N t

G(W ) = V . We denote with
dt(G) the number of the total dominating sets of the graph G. Now it is possible to de�ne
the total domination polynomial of a graph, which is the ordinary generating function for the
number of total dominating sets in a graph.

De�nition 5.2. Let G = (V,E) be a simple graph and dtk(G) be the number of total domina-
ting sets in G of size k. Then the total domination polynomial is de�ned as follows

Dt(G, x) =
n∑
k=2

dtk(G)xk.

Remark 5.3. Every total dominating set is a dominating set, but not every dominating set
is a total dominating set. So dtk(G) ≤ dk(G).

Like many other graph polynomials the total domination polynomial is multiplicative with
respect to the components of the graph.

Theorem 5.4. Let G = (V,E) be a graph and G1, . . . , Gk be the k components of the graph.
Then

Dt(G, x) =

k∏
i=1

Dt(Gi, x). (5.1)

Proof. The theorem follows directly from the de�nition of the total domination polynomial.

Many results of the domination polynomial can be proved for the total domination poly-
nomial. Kotek, Preen and Tittmann [KPT13] proved that the sum over the domination
polynomials of all vertex induced subgraphs of a graph is equal 1 + (−x)|V |. A similar result
also holds for the total domination polynomial:
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Theorem 5.5. Let G = (V,E) be a connected graph with at least two vertices. Then∑
W⊆V

(−1)|W |Dt(G[W ], x) = 1 + (−x)|V |.

Proof. The proof follows from the proof of Theorem 4.8. First of all, we insert the de�nition
of the total domination polynomial in the equation and change the order of the summation.
The argumentation of the single steps is the same as in the corresponding theorem for the
independent domination polynomial, except for the usage of the total open neighborhood.

∑
W⊆V

(−1)|W |Dt(G[W ], x) =
∑
W⊆V

(−1)|W |
∑
U⊆W

Nt
G[W ]

(U)=W

x|U |

=
∑
U⊆V

x|U |
∑

W :U⊆W
Nt

G[W ]
(U)=W

(−1)|W |

=
∑
U⊆V

x|U |
∑

W :U⊆W⊆Nt
G[W ]

(U)

(−1)|W |

=
∑
U⊆V

U⊆Nt
G(U)

x|U |
∑

W :U⊆W⊆NG[U ]

(−1)|W |

=
∑
U⊆V

U⊆Nt
G(U)

(−x)|U |
∑

Y⊆NG(U)

(−1)|Y |

= 1 + (−x)|V |.

The last theorem together with the type of the graph (see De�nition 2.8) yields the next
corollary.

Corollary 5.6. Let G = (V,E) be a graph. Then∑
W⊆V

(−1)|W |Dt(G[W ], x) =
∏
i∈λG
i 6=1

(
1 + (−x)i

)
.

Proof. If G has an isolated vertex, e.g. v, then all terms in the sum are equal to zero if v ∈W .
Therefore, we only need to sum over V \{v} and obtain the corollary.

Applying the Möbius inversion to Corollary 5.6 yields the following equation.

Dt(G, x) =
∑
W⊆V

(−1)|W |
∏

i∈λG[W ]

i 6=1

(
1 + (−x)i

)
.

We call a graph G conformal if all of its components are either of order one or of even
order. Let Con(G) be the set of all vertex-induced conformal subgraphs of G.
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Corollary 5.7. Let G = (V,E) be a graph. Then

dt(G) =
∑

H∈Con(G)

(−1)iso(H)2c(H).

Corollary 5.7 shows that, in contrast to the number of domination sets, the number of total
dominating sets can either be even or odd.
The next theorem can be proved with the principle of inclusion-exclusion. We simply use

a result about the probabilistic version of the total domination polynomial. Therefore, this
theorem is a direct result of Theorem 5.35.

Theorem 5.8. Let G = (V,E) be a graph. Then

Dt(G, x) =
∑
W⊆V

(−1)|W |(1 + x)|V \N
t
G(W )|.

Proof. Applying Corollary 5.34 to Theorem 5.35 yields

Dt(G, x) = (1 + x)|V |DRelt(G,
x

x+ 1
)

= (1 + x)|V |
∑
W⊆V

(−1)|W |(1− x

1 + x
)|N

t
G(W )|

= (1 + x)|V |
∑
W⊆V

(−1)|W |(1 + x)−|N
t
G(W )|

=
∑
W⊆V

(−1)|W |(1 + x)|V \N
t
G(W )|.

Corollary 5.9. Let G = (V,E) be a graph with n vertices. Then the total domination
polynomial satis�es

Dt(G, x) =
n∑
k=0

xk
∑
W⊆V

|Nt
G(W )|≤n−k

(−1)|W |
(
n− |N t

G(W )|
k

)
.

Proof. The proof follows exactly the proof in [KPT13], except for using the total open neigh-
borhood instead of the closed neighborhood. Using Theorem 5.8, we obtain

Dt(G, x) =
∑
W⊆V

(−1)|W |(1 + x)|V \N
t
G(W )|

=
∑
W⊆V

(−1)|W |
n−|Nt

G(W )|∑
k=0

(
n− |N t

G(W )|
k

)
xk

=

n∑
k=0

xk
∑
W⊆V

(−1)|W |
(
n− |N t

G(W )|
k

)

=
n∑
k=0

xk
∑
W⊆V

|Nt
G(W )|≤n−k

(−1)|W |
(
n− |N t

G(W )|
k

)
.
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5.1 On the t-Essential Sets of a Graph

The essential sets of a graph were introduced by Kotek et al. [KPT13]. They showed that only
the essential sets of the graph are necessary for the calculation of the domination polynomial.
We introduce the t-essential sets of the graph G and prove a similar result for the total
domination polynomial.

De�nition 5.10. Let G = (V,E) be a graph and W be a vertex subset of the graph. The
set W is called t-essential if W contains the open neighborhood of at least one vertex of the
graph. We denote the family of t-essential sets of G by Esst(G), in formula:

Esst(G) = {X ⊆ V : ∃v ∈ V : X ⊇ N(v)}.

Theorem 5.11. Let G = (V,E) be a graph and n = |V |. Then

Dt(G, x) = (−1)n
∑

W∈Esst(G)

(−1)|W |
[
(1 + x)|{u∈V :N(u)⊆W}| − 1

]
.

Proof. Again using Theorem 5.8, we obtain

Dt(G, x) =
∑
W⊆V

(−1)|W |(1 + x)|V \N
t
G(W )|

=
∑
U⊆V

(−1)|V \U |(1 + x)|V \N
t
G(V \U)|.

Now we investigate the exponent of (1 + x):

V \N t
G(V \U) = V \

⋃
v∈V \U

N(v)

= V \{u ∈ V : N(u) ∩ (V \U) 6= ∅}
= V \{u ∈ V : N(u) * U}
= {u ∈ V : N(u) ⊆ U}.

So we obtain:
Dt(G, x) =

∑
U⊆V

(−1)|V \U |(1 + x)|{u∈V :N(u)⊆U}|.

All polynomials (1+x)|{u∈V :N(u)⊆U}| have the constant term 1 and if V 6= ∅, then the constant
term vanishes in the sum. Hence, we can write:

Dt(G, x) =
∑
U⊆V

(−1)|V \U |
[
(1 + x)|{u∈V :N(u)⊆U}| − 1

]
.

If U is not a t-essential set, then {u ∈ V : N(u) ⊆ U} = ∅. Consequently, only the terms
corresponding to t-essential sets are not vanishing and we can restrict the summation to the
set of t-essential sets of the graph.

Theorem 5.11 can be used for the fast calculation of the total domination polynomial in
graphs with a high minimum degree. But a fast generation of the t-essential sets is necessary.
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Lemma 5.12. Let G = (V,E) be a graph. Then

min
W∈Esst(G)

{|W |} = δ(G)

and
N(v) ∈ Esst(G), v ∈ V.

Proof. The argumentation is the same as in the proof of Lemma 4.15.

5.2 Recurrence Equations

T. Kotek et al. presented in [Kot+12] some recurrence equations for the domination poly-
nomial. These results can also be proved with some minor changes for the total domination
polynomial.

De�nition 5.13. Let G = (V,E) be a graph and u ∈ V . Then pu(G) is the total domination
polynomial of G −N [u] under the condition that all vertices in N(u) will be dominated by a
vertex of G−N [u].

Theorem 5.14. Let G = (V,E) be a graph. For any vertex u ∈ V we obtain

Dt(G, x) = Dt(G− u, x) + xDt(G/u, x)− (1 + x)pu(G) + x2
∑

v∈N(u)

Dt(G−N [{u, v}], x).

Proof. If the vertex u ∈ V is non-dominating, then at least one of its neighbors must be a
dominating vertex. Dt(G − u, x) counts all total dominating sets in G − u, especially those
total dominating sets W with N(u) ∩W = ∅. So we must subtract pu(G) and obtain the
polynomial for the desired case. If u is a dominating vertex, then also at least one vertex
in N(u) must be a dominating vertex. The polynomial Dt(G/u, x) − pu(G) counts the total
dominating sets in G−u with at least one dominating vertex in N(u). But it is possible that
a single vertex in N(u), e.g. v is dominating, but no other vertex in N(v) except of u. In G
this dominating set is a total dominating set, but in G − u it is only a dominating set and
will not be counted by the previous term. The sum x2

∑
v∈N(u)

Dt(G −N [u] −N [v], x) counts

exactly these total dominating sets and the theorem follows.

Corollary 5.15. Let G = (V,E) be a graph and u, v ∈ V be two non-adjacent vertices of the
graph with N(v) ⊆ N(u). Then

Dt(G, x) = Dt(G− u, x) + xDt(G/u, x) + x2
∑

w∈N(u)∩N(v)

Dt(G−N [{u,w}], x).

Proof. If N(v) ⊆ N(u), then the vertex v has degree zero in G−N [u] and therefore pu(G) = 0.
Let the vertex u and a vertex w ∈ N(u)−N(v) be dominating. Then v ∈ V \N [{u,w}] is an
isolated vertex in G−N [{u,w}] and therefore Dt(G−N [{u,w}], x) = 0. The remaining sum
follows from Theorem 5.14.

Corollary 5.16. Let G = (V,E) be a graph and u, v ∈ V be two vertices with N [v] ⊆ N [u].
Then

Dt(G, x) = Dt(G− u, x) + xDt(G/u, x) + x2
∑

w∈N(u)

Dt(G−N [{u,w}], x).
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Proof. If N [v] ⊆ N [u], then v is only adjacent to u and some of its neighbors and cannot be
dominated by a vertex in G−N [u]. Therefore, pu(G) = 0.

Corollary 5.17. Let G = (V,E) be a graph, u, v ∈ V be two vertices of the graph with
N [v] ⊆ N [u] and let N(u) induce a clique in the graph. Then

Dt(G, x) = (1 + x) Dt(G− u, x) + x2
∑

w∈N(u)

Dt(G−N [{u,w}], x).

De�nition 5.18. Let G = (V,E) be a graph and u, v ∈ V . Then pu,v(G) is the generating
function for the total dominating sets W in G− u with W ∩N(u) = {v}.

Lemma 5.19. [Kot+12] Let G = (V,E) be a graph and let e = {u, v} ∈ E. Then

pu(G− e) = pu,v(G) + pu(G).

Theorem 5.20. Let G = (V,E) be a graph and e = {u, v} ∈ E. Then

Dt(G, x) = Dt(G− e, x) + pu(G− e) + pv(G− e)− pu(G)− pv(G)

+ x2
(

Dt(G−N [{u, v}], x)

+ Dt(G− (N [u]\{v}), x)− pv(G−N [u]) + x
∑

w∈N(v)

Dt(G−N [{u, v, w}], x)

+ Dt(G− (N [v]\{u}), x)− pu(G−N [v]) + x
∑

w∈N(u)

Dt(G−N [{u, v, w}], x)
)
.

Proof. The polynomial Dt(G, x)−Dt(G− e, x) counts exactly those total dominating sets W
of G which are not total dominating sets in G− e. There are two possible situations in which
such total dominating sets occur. In Figure 5.1 and 5.2 the two possible cases are shown.

u

ve

Fig. 5.1: The vertices u and v are
dominating.

u

ve

Fig. 5.2: The vertices u, v and at least one
vertex in N(u)\N(v) are dominating.

In the �rst case, the two end vertices u and v of the edge e are dominating and no vertex
in the neighborhood of one of the two vertices is dominating. If no vertex in N({u, v}) is
dominating, then x2 Dt(G−N [{u, v}], x) is the generating function for these total dominating
sets (see Figure 5.1). Let now u and v be dominating vertices and u the only dominating
vertex in the neighborhood of v and at least one vertex in the neighborhood of u, except of
v, is dominating (see Figure 5.2). Then we can remove v and all vertices in the neighborhood
of v except of u, because they will be dominated from v. Then we obtain the remaining part
of the term with the argumentations of the second part of the proof of Theorem 5.14.
In the second case, one of the two vertices u and v is dominating and the other one is

only dominated by this vertex. Precisely, if u is non-dominating, then the only neighbor of u
which is dominating is v (see Figure 5.3). The function pu,v(G, x) counts exactly these total
dominating sets. We also obtain the equivalent term for the other case. Together with Lemma
5.19 we obtain the theorem.
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u

ve

Fig. 5.3: Only the vertex v is dominating.

Corollary 5.21. Let G = (V,E) be a graph, e = {u, v} ∈ E and N [u] = N [v]. Then

Dt(G, x) = Dt(G− e, x) + x2 Dt(G−N [u], x).

Proof. The only case in which a total dominating set in G is not a total dominating set in
G − e is if both vertices u and v are dominating and no vertex in N(u)\{v} is dominating.
These total dominating sets are counted by x2 Dt(G−N [u], x). If only one vertex of {u, v} is
dominating, then a vertex in N(u)\{v} must be dominating. But if such a vertex exists, then
this total dominating set is also a total dominating set in G − e. The same argumentation
holds if neither u or v is dominating.

Theorem 5.22. Let G = (V,E) be a graph. Then

Dt(G, x) = Dt(G− u, x) + Dt(G� u, x)−Dt(G} u, x).

Proof. Applying Equation (2.1) to Theorem 5.14 yields

Dt(G, x)−Dt(G− u, x) =xDt(G/u, x)− (1 + x)pu(G)

+ x2
∑

v∈N(u)

Dt(G−N [{u, v}], x)

=xDt((G� u)/u, x)− (1 + x)pu(G� u)

+ x2
∑

v∈N(u)

Dt(G−N [{u, v}], x). (5.2)

Now apply Theorem 5.14 to the graph G� u

Dt(G� u, x)−Dt((G� u)− u, x) =xDt((G� u)/u, x)− (1 + x)pu(G� u)

+ x2
∑

v∈NG�u(u)

Dt((G� u)−NG�u[{u, v}], x). (5.3)

Observe that NG(u) = NG�u(u) and (G� u)−NG�u[{u, v}] = G−NG�u[{u, v}]. These two
observations together with Equations (5.2) and (5.3) give the theorem.

5.3 Special Graph Classes

In this section we investigate the total domination polynomial in some special graph classes.
First we prove theorems for complete and complete bipartite graphs.

Lemma 5.23. Let G = (V,E) be a complete graph with n vertices. Then

Dt(Kn, x) = (1 + x)n − nx− 1.
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Proof. In a complete graph every subset W of V , with |W | > 1, is a total dominating set.

Theorem 5.24. Let G = (V,E) be the complete bipartite graph Km,n = (V1 ∪ V2, E). Then

Dt(Km,n, x) = (1 + x)m+n − (1 + x)m − (1 + x)n + 1.

Proof. Every vertex subset W ⊆ V , with W ∩ V1 6= ∅ and W ∩ V2 6= ∅, is a total dominating
set. The term (1+x)m+n is the generating function for the subsets of V . So we must subtract
the possibilities to choose subsets that consist only of vertices of V1 or V2, respectively.

Theorem 5.25. Let Pn be a path with n vertices (n ≥ 5) and pn = Dt(Pn, x) its total
domination polynomial. Then

pn = xpn−1 + x2(pn−3 + pn−4).

The initial conditions are

p1 = 0,

p2 = x2,

p3 = x3 + 2x2,

p4 = x4 + 2x3 + x2.

Proof. Let p1
n be the total domination polynomial of the path Pn under the condition that the

�rst vertex of the path is a dominating vertex and p2
n be the polynomial under the condition

that the �rst vertex is non-dominating. Then we can write the total domination polynomial
of the graph in the following way:

pn = p1
n + p2

n. (5.4)

If the �rst vertex is non-dominating, then it must be dominated by the second vertex. This
yields

p2
n = p1

n−1. (5.5)

If the �rst vertex of Pn is dominating, then the second one has to be dominating, too. We ob-
tain two possibilities for the third vertex. If the third vertex is dominating, then it dominates
the second vertex and this is counted by xp1

n−1. If the third vertex is non-dominating, then it
will be dominated by the second vertex. This leads to x2pn−3. Together with Equation (5.5)
we obtain

p1
n = xp2

n + x2pn−3. (5.6)

Inserting the Equations (5.5) and (5.6) in Equation (5.4) we obtain

pn = xp2
n + x2pn−3 + p1

n−1

= x2pn−3 + xp1
n−1 + (xp2

n−1 + x2pn−4)

= xpn−1 + x2(pn−3 + pn−4).

To prove a theorem for the cycle we need the next two lemmas.
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Lemma 5.26. Let Pn be a path with n vertices (n ≥ 4) and pn = Dt(Pn, x). Let p1
n be the

total domination polynomial of the path Pn if the �rst vertex is dominating. Then

p1
n = xp1

n−1 + x2pn−3.

The initial conditions are

p1
1 = x,

p1
2 = x2,

p1
3 = x2 + x3.

Proof. If in the path Pn the �rst vertex is dominating, then the second vertex must be a
dominating vertex. If the third vertex is also dominating, then we obtain xp1

n−1. If the third
vertex is non-dominating, then it will be dominated by the second vertex. In this case we
obtain the polynomial x2pn−3.

Lemma 5.27. Let Pn be a path with n vertices (n ≥ 7) and pn = Dt(Pn, x). Let p3
n be the

total domination polynomial under the condition that both end vertices are dominating. Then

p3
n = x2p3

n−2 + 2x3p1
n−4 + x4pn−6.

The initial conditions are

p3
2 = x2, p3

3 = x3,

p3
4 = x4, p3

5 = x4 + x5,

p3
6 = x4(1 + x)2.

Proof. If in the path Pn the two end vertices are dominating, then the second and the second
to the last vertex must be dominating. Let now u be the third vertex and v be the last but
two vertex. If both u and v are dominating vertices, then we can cut o� the �rst vertex on
each side and obtain x2p3

n−2. If exactly one of the two vertices u and v is dominating (e.g. u),
then the other vertex (e.g. v) will be dominated by its neighbor and has no in�uence on the
other vertices of the graph. This yields 2x3p1

n−4. If both vertices are non-dominating, then
they will be dominated by their neighbors and we can cut o� the �rst three vertices of each
side of the path and obtain x4pn−6 for this case.

The next two theorems give results for the cycle and the complement of a cycle.

Theorem 5.28. Let G = (V,E) be a cycle with n vertices (n ≥ 5), then

Dt(Cn, x) = p3
n + p3

n−2 + 2p1
n−1 + 2xp1

n−2 + x2pn−4.

Proof. Let u, v ∈ V be two vertices of the cycle with {u, v} ∈ E and let u1 be the other
neighbor of u and v1 the other neighbor of v. If u and v are dominating vertices, then u1 and
v1 can be dominating or not. So we have three possible cases. If both vertices are dominating,
then we can remove the edge e and obtain p3

n. If neither u1 nor v1 are dominating, then they
will be dominated from u, respectively v. This case is counted by x2pn−4. If only one of the
two vertices is dominating, e.g. u1, then v1 will be dominated by v and we can remove the
edge e and obtain xp1

n−2 for the remaining graph.
If only one of the two vertices u and v is a dominating vertex, e.g. u, then the next vertex

on the cycle, here u1, must also be a dominating vertex. On the other side v will be dominated
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v1
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Fig. 5.4: Calculation of the total domination polynomial in a cycle.

by u and so we can delete the vertex v. With these considerations we obtain p1
n−1 for this

case. The last case is that neither u nor v are dominating vertices. Hence, u1 and v1 must be
dominating vertices and we obtain p3

n−2.

Theorem 5.29. Let Cn be a cycle with at least �ve vertices. Then

Dt(Cn, x) = (1 + x)n − n(x3 + 2x2 + x)− 1.

Proof. First note that every vertex subset W ⊆ V , with |W | ≥ 4, is a total dominating set
in Cn. If we only choose three dominating vertices some subsets are not total dominating
sets. These are exactly those sets where we choose three consecutive vertices. So we have(
n
3

)
− n possibilities to choose a total dominating set with three vertices. If we choose only

two vertices, then all choices are valid except for the selection of two vertices that have the
distance one or two in the cycle Cn. These are exactly

(
n
2

)
− 2n possibilities. With these

considerations we obtain

Dt(Cn, x) =
n∑
k=4

(
n

k

)
xk +

((
n

3

)
− n

)
x3 +

((
n

2

)
− 2n

)
x2

=
n∑
k=2

(
n

k

)
xk − nx3 − 2nx2

= (1 + x)n − n(x3 + 2x2 + x)− 1.

We can use the previous results and prove the following theorem.

Theorem 5.30. Let G = (V,E) be a wheel graph Wn with n vertices (n ≥ 3). Then

Dt(Wn, x) = Dt(Cn−1, x) + x
(
(1 + x)n−1 − 1

)
.

Proof. Let v ∈ V be the center vertex of the wheel Wn. If v is not a dominating vertex, then
the total domination polynomial of Cn−1 is the polynomial for this case because every total
dominating set in Cn−1 dominates v. If v is a dominating vertex, then at least one vertex on
the Cn−1 must be dominating. This leads to the term

x
(
(1 + x)n−1 − 1

)
.
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Corollary 5.31. Let G = (V,E) be a fan graph Fn with n vertices (n ≥ 3), then from
Theorem 5.30 follows:

Dt(Fn, x) = Dt(Pn−1, x) + x
(
(1 + x)n−1 − 1

)
.

5.4 Total Domination Reliability Polynomial

Suppose we have a network of clients and every client controls the clients in its neighborhood.
If the clients fail with a given probability, we can ask: What is the probability that every
client will be controlled by another client? This question asks for the probability that there
exists a total dominating set in the probabilistic graph. To answer this question, we de�ne
the total domination reliability polynomial.

De�nition 5.32. Let G = (V,E) be a graph whose vertices are subject to random and inde-
pendent failure with probability q = 1 − p. Then the total domination reliability polynomial
DRelt(G, p) is de�ned as follows

DRelt(G, p) =
n∑
k=2

dtk(G)pk(1− p)n−k.

The �rst lemma in this section shows the connection between the total domination reliability
polynomial and the total domination polynomial.

Lemma 5.33. Let G = (V,E) be a graph and Dt(G, x) be the total domination polynomial of
G. Then the total domination reliability polynomial can be calculated in the following way:

DRelt(G, p) = (1− p)n Dt(G,
p

1− p
).

Corollary 5.34. Let G = (V,E) be a graph and DRelt(G, p) the total domination reliability
polynomial. Then

Dt(G, x) = (1 + x)n DRelt(G,
x

x+ 1
).

Theorem 5.35. Let G = (V,E) be a graph and the vertices of the graph are subject to random
and independent failure with probability q = 1− p. Then

DRelt(G, p) =
∑
W⊆V

(−1)|W |(1− p)|Nt
G(W )|.

Proof. Let Au be the event that no vertex in the open neighborhood of the vertex u is
operating. Then

⋂
u∈W Au occurs if and only if the operating vertices form a total dominating

set in G. The event
⋂
u∈W Au occurs if and only if all vertices in N t

G(W ) fail. This event

happens with probability q|N
t
G(W )|. Applying the inclusion-exclusion principle, the theorem

follows.
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5.5 The Trivariate Domination Polynomial

The enumeration of total dominating sets can be re�ned in the following way. We might want
to distinguish all vertex subsets of a given graph with respect to its cardinality, the cardinality
of its open neighborhood, and the number of isolated vertices in the induced subgraph, which
yields a trivariate generating function.

De�nition 5.36. Let G = (V,E) be a graph. Then the trivariate domination polynomial is
given as follows:

Y(G;x, y, z) =
∑
W⊆V

x|W |y|N(W )|ziso(G[W ]).

Let G = (V,E) be a graph and we denote by ti,j,k(G) the number of subsetsW with i = |W |,
j = |N(W )| and k = iso(G[W ]). Then we can write the trivariate domination polynomial as

Y(G;x, y, z) =
n∑
i=0

n∑
j=0

n∑
k=0

ti,j,k(G)xiyjzk.

Lemma 5.37. Let G = (V,E) be a graph with two components G1 = (V1, E1) and G2 =
(V2, E2). Then

Y(G;x, y, z) = Y(G1;x, y, z) Y(G2;x, y, z).

Proof. We can simply use the de�nition to prove the lemma:

Y(G;x, y, z) =
∑
W⊆V

x|W |y|N(W )|ziso(G[W ])

=
∑

W⊆V1∪V2

x|W |y|N(W )|ziso(G[W ])

=
∑

W1⊆V1

x|W1|y|N(W1)|ziso(G[W1])
∑

W2⊆V2

x|W2|y|N(W2)|ziso(G[W2])

= Y(G1;x, y, z) Y(G2;x, y, z).

Theorem 5.38. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs, with |V (G)| = n
and |V (H)| = m. Then the trivariate domination polynomial of the join of these two graphs
can be calculated with

Y(G ∗H;x, y, z) = yn+m

[(
Y(G;

x

y
, 1, 1)− 1

)(
Y(H;

x

y
, 1, 1)− 1

)]
+ ym (Y(G;x, y, z)− 1) + yn (Y(H;x, y, z)− 1) + 1.

Proof. If in both graphs at least one vertex is dominating, then all non-dominating vertices
will be dominated and the dominating vertices induce a connected subgraph in G ∗H. This
case will be counted by the �rst part of the sum. If in the graph H no vertex is dominating,
but at least one vertex in G, then all vertices in H will be dominated. This is counted by
ym (Y(G;x, y, z)− 1). The same argumentation is valid if no vertex in G is dominating, but
at least one in H.
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Corollary 5.39. Let G = (V,E) be a graph and |V | = n. Then

Y(G ∗K1;x, y, z) =xyn Y(G;
x

y
, 1, 1) + y (Y(G;x, y, z)− 1)

+ (z − 1)xyn + 1.

Proof. The new vertex v ∈ V (K1) is adjacent to all vertices inG. Therefore, if v is dominating,
then all non-dominating vertices in G will be dominated by v. The term

xyn Y(G;
x

y
, 1, 1)

counts these cases. But if in G no vertex is dominating and v is dominating, then v is an
isolated vertex in the induced subgraph. Hence, we must subtract xyn and add xynz. If the
vertex v is non-dominating, then it will be dominated from any dominating vertex in G. This
case is counted by y (Y(G;x, y, z)− 1).

5.5.1 Encoded Graph Invariants

It is easy to verify that we can obtain the total domination polynomial from the trivariate
domination polynomial with

Dt(G, x) = [yn] Y(G;xy, y, 0),

the domination polynomial with

D(G, x) = [yn] Y(G;xy, y, 1)

and the independent domination polynomial with

Di(G, x) = [ynzn] Y(G;xy, yz, z). (5.7)

Theorem 5.40. Let G = (V,E) be a graph, Y(G;x, y, z) be the trivariate domination poly-
nomial, I(G, x) be the independence polynomial and Ψ(G, x) be the vertex-cover polynomial of
the graph. Then

I(G, x) = lim
z→∞

Y(G;
x

z
, 1, z) and

Ψ(G, x) = x|V | lim
z→∞

Y(G;
1

xz
, 1, z)

Proof. A vertex subset W of the graph G = (V,E) is an independent set if it only consists
of isolated vertices in G[W ]. Using the de�nition of the trivariate domination polynomial, we
obtain:

Y(G;
x

z
, 1, z) =

∑
W⊆V

(x
z

)|W |
ziso(G[W ])

=
∑
W⊆V

x|W |

z|W |−iso(G[W ])
.

The term |W | − iso(G[W ]) is equal to zero if and only if W is an independent set. Oth-
erwise, if W is not an independent set, then with the limes the corresponding summand
vanishes. The connection to the vertex-cover polynomial follows from the connection between
the independence polynomial and the vertex-cover polynomial.
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In Figure 5.5 some connections between di�erent domination related polynomials are shown.
An arrow in the �gure means that this graph polynomial can be obtained from the correspond-
ing polynomial. A dashed arrow means that this connection only exists in some special graph
classes.

total

domination

Dt(G, x)

domination

D(G, x)
independence

I(G, x)

matching
µ(G, x)

trivariate
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Y(G;x, y, z)

bipartition

B(G;x, y, z)
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Ψ(G, x)

independent

domination

Di(G, x)

Fig. 5.5: Graph of domination related graph polynomials.

The next theorem shows some basic graph invariants which can be obtained from the
trivariate domination polynomial.

Theorem 5.41. Let G = (V,E) be a graph and Y(G;x, y, z) its trivariate domination poly-
nomial. Let k(G) be the number of the components of the graph and ni be the order of the i-th
component. Then

|V | = deg(Y(G;x, 1, 1)),

|E| = 1

2

n−1∑
j=1

j t1,j,1 = [x2z0] Y(G;x, 1, z),

iso(G) = [x] Y(G;x, 0, 1),

Y(G; 1, 0, 1) = 2k(G),

Y(G;x, 0, 1) =

k(G)∏
i=1

(1 + xni) .

Theorem 5.42. Let G = (V,E) be a graph. Then the degree generating function of G is∑
v∈V

tdeg(v) = [x] Y(G;x, t, 1).

Proof. If we substitute y by t and z by 1, we obtain:

Y(G;x, t, 1) =
∑
W⊆V

x|W |t|N(W )\W |.

In the equation we only need those summands where the power of x is equal one. Therefore, in
the sum we are only interested in subsets of size one. Hence, we obtain the degree generating
function:

[x] Y(G;x, t, 1) =
∑
v∈V

t|N(v)|.
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5.5.2 Graph Products

In this section, we investigate the trivariate domination polynomial of some product graphs
(see Section 2.3 for an introduction to the di�erent product graphs).

Cartesian Product

The �rst product of interest is the Cartesian product of two graphs.

Theorem 5.43. The trivariate domination polynomial of the Cartesian product of the com-
plete graphs K2 and Kn, with n ≥ 2, can be calculated with

Y(K2�Kn;x, y, z) = 2((y + xy)n − yn(1 + nx(1− z))) + ((x+ y)n − yn − nxyn−1)2

+ 2nxyn

[(
x

y
+ z

)
(x+ y)n−1 − yn−1z

+ xyn−2

(
1

2
(n− 1)z2 − (n− 1)z − 1

2

)]
.

Proof. To prove the theorem, we distinguish between three possible cases: 1. Only in one of
the two rows there is a dominating vertex, 2. in both rows at least two vertices are dominating
and 3. in one row exactly one vertex and in the other row at least one vertex is dominating.
It is easy to see that the sum of the polynomials of these three cases yields the theorem.

1. Every dominating vertex dominates all other vertices in the same row and exactly one
vertex in the other row. The polynomial yn(1 + yx/y)n counts this case. But here we also
count the choice of the empty set and if we have exactly one dominating vertex, then it is an
isolated dominating vertex. This yields

2yn((1 + x)n − 1− nx+ nxz) = 2((y + xy)n − yn + nxyn(z − 1))

for the �rst part of the proof.

2. If in both rows at least two vertices are dominating, then all other vertices are dominated
and no isolated dominating vertex exists. This yields

y2n((1 + x/y)n − 1− nx/y)2.

3. If in the �rst row exactly one vertex is dominating, then it dominates all vertices in this
row. If the adjacent vertex in the second row is non-dominating, then the dominating vertex is
an isolated dominating vertex and we can choose dominating vertices in the remaining (n−1)
vertices. This yields:

nxy2n−1z

((
1 +

x

y

)n−1

− 1 + (n− 1)
x

y
(z − 1)

)
. (5.8)

If the vertex adjacent to the �rst vertex is dominating, then no isolated dominating vertex
exists and we can choose dominating vertices from the remaining (n−1) vertices. This yields:

nx2y2n−2

(
1 +

x

y

)n−1

. (5.9)
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The same argumentation holds for the reverse case. Therefore, we add (5.8) and (5.9) and
multiply the result by two. But now we count the case that in any of both rows exactly one
vertex is dominating twice. We count this case with

ny2n−1x

(
(n− 1)

x

y
z2 +

x

y

)
= ny2n−2x2

(
(n− 1)z2 + 1

)
. (5.10)

Summing the Equations (5.8), (5.9) and (5.10) yields:

2nxy2n−1z

((
1 +

x

y

)n−1

− 1 + (n− 1)
x

y
(z − 1)

)
+ 2nx2y2n−2

(
1 +

x

y

)n−1

− ny2n−2x2
(
(n− 1)z2 + 1

)
= 2nxy2n−1

(
z

(
1 +

x

y

)n−1

− z − (n− 1)
x

y
z + (n− 1)

x

y
z2

+
x

y

(
1 +

x

y

)n−1
)
− ny2n−2x2

(
(n− 1)z2 + 1

)
= 2nxyn

(
z(y + x)n−1 − yn−1z − (n− 1)xyn−2z + (n− 1)xyn−2z2

+
x

y
(y + x)n−1

)
− ny2n−2x2

(
(n− 1)z2 + 1

)
= 2nxyn

((
z +

x

y

)
(x+ y)n−1 − yn−1z + (n− 1)xyn−2z(z − 1)

− 1

2
xyn−2((n− 1)z2 + 1)

)

= 2nxyn

((
x

y
+ z

)
(x+ y)n−1 − yn−1z + xyn−2

(
1

2
(n− 1)z2 − (n− 1)z − 1

2

))
.

Taking all cases together and doing some simpli�cations, we obtain the theorem.

Lexicographic Product

Theorem 5.44. Let G = (V,E) be a connected graph with m vertices (m ≥ 2). Then the
trivariate domination polynomial of the lexicographic product of the complete graph Kn with
at least two vertices and the graph G can be calculated by

Y(Kn ·G;x, y, z) =ny(n−1)m (Y(G;x, y, z)− 1)

+ ynm
n∑
i=2

(
n

i

)
((1 + x/y)m − 1)i + 1.

Proof. The �rst observation is that a vertex is adjacent to all other vertices which are not in
the same row. Therefore, if only in one row vertices are dominating, then all vertices outside
this row and all adjacent vertices in this row are dominated. The polynomial Y(G;x, y, z)
counts the vertex subsets of one row and therefore

ny(n−1)m (Y(G;x, y, z)− 1)
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is the polynomial for the �rst case.

If vertices in at least two rows are dominating, then all other vertices in the graph are
dominated. This will be counted by

ynm
n∑
i=2

(
n

i

)
((1 + x/y)m − 1)i

and the theorem follows.

Theorem 5.45. Let G = (V,E) be a connected graph with at least two vertices. Then the
trivariate domination polynomial of the lexicographic product of the graph G and the complete
graph Kn (n ≥ 2) can be calculated by

Y(G ·Kn;x, y, z) = Y

(
G; (y + x)n − yn, yn, 1 +

nx(z − 1)/y

(1 + x/y)n − 1

)
.

Proof. Analog to the proof of Theorem 6.53.

Theorem 5.46. Let H = (V,E) be a connected graph with m vertices, gn = Y(Pn ·H;x, y, z)
and m,n ≥ 2. Furthermore, let fn be the trivariate domination polynomial of Pn · H under
the condition that in the �rst row at least one vertex is dominating. Then

gn = fn + ym
n−1∑
i=1

fn−i + 1.

Proof. There are two possible cases with respect to the number of dominating vertices in the
�rst row. The �rst case is that at least one vertex is dominating. This will be counted by
fn. If in the �rst row no vertex is dominating, but in the second row at least one vertex is
dominating, then all vertices in the �rst row are dominated. This will be counted by ymfn−1.
Repeating this process recursively yields the theorem.

For the recurrence equations in the next lemma we need the trivariate domination polyno-
mials of the products P0 · H and P1 · H, respectively. Without loss of generality we de�ne
g0 = 1 and g1 = Y(H;x, y, z).

Lemma 5.47. Let H = (V,E) be a graph withm vertices, gn = Y(Pn·H;x, y, z) andm,n ≥ 2.
Furthermore, let fn be the trivariate domination polynomial of Pn ·H under the condition that
in the �rst row at least one vertex is dominating and hn be the polynomial under the condition
that the �rst row is already dominated and at least one vertex is dominating in it. Then

fn = (Y(H;x, y, z)− 1) ymgn−2 + ((y + x)m − ym)hn−1 and

hn = ((y + x)m − ym) (ymgn−2 + hn−1) .

The initial conditions are

f1 = Y(H;x, y, z)− 1

h1 = (y + x)m − ym.
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Proof. First we calculate the polynomial under the condition that in the �rst row at least
one vertex is dominating. For that purpose we distinguish two cases: (1) In the second row
no vertex is dominating and (2) in the second row at least one vertex is dominating. If in
the second row no vertex is dominating, but in the �rst one at least one, then all vertices
in the second row are dominated. This case will be counted by (Y(H;x, y, z)− 1) ymgn−2.
But if in the second row at least one vertex is dominating, then all vertices in the �rst
row are dominated independently from the dominating vertices in the �rst row. This yields
((y + x)m − ym)hn−1 and the �rst part of the theorem follows.
Suppose now that all vertices in the �rst row are dominated, but at least one vertex of

this row must be dominating. In the �rst row we can choose any non-empty vertex subset
and the non-dominating vertices are dominated. Again we distinguish between two cases
with respect to the number of dominating vertices in the second row. If in the second row
no vertex is dominating, then all vertices will be dominated and this case will be counted
by ((y + x)m − ym) ymgn−2. If in the second row at least one vertex is dominating, then we
simply obtain ((y + x)m − ym)hn−1 and the second part of the theorem follows.

Strong Product

Theorem 5.48. Let G = (V,E) be a graph. Then the trivariate domination polynomial of
the strong product of the complete graph Kn (n ≥ 2) and the graph G can be obtained by

Y(G�Kn;x, y, z) = Y

(
G; (y + x)n − yn, yn, 1 +

nx(z − 1)/y

(1 + x/y)n − 1

)
.

Proof. Let W ⊆ V (G), with i = |W |, i ≥ 2, and k = iso(G[W ]), be a set of dominating
vertices in G and yijk = [xiyjzk] Y(G;x, y, z). Then in the product graph every dominating
vertex can be replaced by one or more of the n vertices in the same row and the remaining
vertices in this row will be dominated. If this vertex is not an isolated vertex in G[W ], then
this will be counted by

((1 + x/y)n − 1)i−kyn(i−k).

If a vertex in G is dominating and it is isolated in G[W ] and we choose exactly one vertex
in this row, then this vertex will also be an isolated vertex in (G�Kn)[W ]. If we choose more
than one vertex, then these vertices are pairwise adjacent and we obtain no isolated vertex.
This will be counted by

((1 + x/y)n − 1− nx/y + nxz/y)k ykn.

Adding these cases together yields:

Y(G�Kn;x, y, z) =
∑
i,j,k

yijk((1 + x/y)n − 1)i−kyn(i+j)((1 + x/y)n − 1− nx/y + nxz/y)k

=
∑
i,j,k

yijk(y
n(1 + x/y)n − yn)iyjn

(
(1 + x/y)n − 1 + nx(z − 1)/y

(1 + x/y)n − 1

)k
=
∑
i,j,k

yijk((y + x)n − yn)iyjn
(

1 +
nx(z − 1)/y

(1 + x/y)n − 1

)k
= Y

(
G; (y + x)n − yn, yn, 1 +

nx(z − 1)/y

(1 + x/y)n − 1

)
.
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5.5.3 Special Graph Classes

In this section we investigate the trivariate domination polynomial of some special graph
classes. In an edgeless graph every vertex is either an isolated dominating vertex or non-
dominated. Therefore, the polynomial is given by

Y(En;x, y, z) = (1 + xz)n.

The next result for the complete graph is easily veri�ed, too.

Theorem 5.49. The trivariate domination polynomial of the complete graph satis�es

Y(Kn;x, y, z) = (x+ y)n − yn + n(z − 1)xyn−1 + 1.

Proof. If W has at least the size two then no isolated vertex exists in Kn[W ], which yields

n∑
k=2

(
n

k

)
xkyn−k.

Vertex subsets W with |W | = 1 give the term n(z − 1)xyn−1 and the theorem follows.

Theorem 5.50. Let Kn1,n2 = (V1 ∪ V2, E) be a complete bipartite graph, with n1 = |V1| and
n2 = |V2|. Then

Y(Kn1,n2 ;x, y, z) = ((x+ y)n1 − yn1) ((x+ y)n2 − yn2)

+ yn1 ((1 + xz)n2 − 1)

+ yn2 ((1 + xz)n1 − 1) + 1.

Proof. If in both of the two sets V1 and V2 at least one vertex is dominating, then all non-
dominating vertices are dominated. This yields the �rst part of the theorem. If only one
of the two sets contains dominating vertices, then such a dominating vertex dominates all
vertices in the other set and it is an isolated dominating vertex. This yields the theorem.

Theorem 5.51. Let G = (V,E) be an (n, k)− star. Then

Y(Sn,k;x, y, z) = yn−k
(

(y + x)k − yk + k(z − 1)xyk−1
)

+
(

(y + x)k − yk
)(

(x+ y)n−k − yn−k
)

+ yk
(

(1 + xz)n−k − 1
)

+ 1.

Proof. If at least one of the center vertices is dominating, then it dominates all other vertices
and if exactly one vertex is dominating, then it is an isolated vertex in G[W ]. In this case we
obtain

yn−k
(

(y + x)k − yk + k(z − 1)xyk−1
)
. (5.11)

If some of the vertices in the clique are dominating and at least one other vertex is dominating,
then the rest of the vertices will be dominated and there will be no isolated vertex in G[W ].
This leads to (

(y + x)k − yk
)(

(x+ y)n−k − yn−k
)
. (5.12)

Now let no vertex in the center-clique be dominating. All the vertices in the center-clique are
dominated by every other vertex which is dominating. But every such dominating vertex is
an isolated vertex in G[W ]. This leads to

yk
(

(1 + xz)n−k − 1
)
. (5.13)

Adding the terms (5.11), (5.12) and (5.13) yields the theorem.
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Corollary 5.52. Let G = (V,E) be an (n, 1)− star. Then

Y(Sn,1;x, y, z) = x (x+ y)n−1 + (z − 1)xyn−1 + y
(

(1 + xz)n−1 − 1
)

+ 1.

Lemma 5.53. Let Pn be a path with n vertices (n ≥ 2), pn be the trivariate domination
polynomial of it and p′n be the trivariate domination polynomial under the condition that the
�rst vertex of the path is already dominated. Then

p′n = xn + xn−1y + y
n−1∑
i=1

xi−1pn−i, (5.14)

with the initial condition

p′1 = x+ y.

Proof. Suppose that the �rst vertex of the path is already dominated. If the �rst vertex is also
dominating, then the second vertex will be dominated. If the �rst vertex is non-dominating,
then we only need to calculate the trivariate domination polynomial in the path Pn−1 and
multiply it with y. The sum of the two cases yields

p′n = xp′n−1 + ypn−1.

Recursive insertion of this equation yields

p′n = x(xp′n−2 + ypn−2) + ypn−1

= . . .

= xn + xn−1yp0 + · · ·+ ypn−1

= xn + xn−1y + y

n−1∑
i=1

xi−1pn−i.

Using the last lemma it is possible to prove the next theorem.

Theorem 5.54. Let Pn be a path with n vertices, pn be the corresponding trivariate domi-
nation polynomial and n ≥ 3. Then

pn = x2p′n−2 + xyz(1 + pn−2) + x2y
n−3∑
i=0

p′i + xy2z
n−3∑
i=0

pi + 1,

where p′n is the trivariate domination polynomial of the path Pn if the �rst vertex is already
dominated. The initial conditions are

p0 = 1

p1 = xz + 1 and

p2 = x2 + 2xyz + 1.

Proof. Suppose that the �rst vertex in the path is dominating, then the second vertex can
either be dominating or not. If the second vertex is dominating, then it dominates the third
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vertex. This case will be counted by x2p′n−2. If the second vertex is non-dominating, then
the �rst vertex is an isolated vertex in G[W ]. This case will be counted by xyzpn−2.

Suppose now that the i-th vertex is non-dominating. If the vertex i+1 is dominating, then it
dominates the vertex i. The vertex i+ 2 can either be dominating or not. If it is dominating,
then it dominates the next vertex and if it is non-dominating, then the vertex i + 1 is an
isolated vertex in G[W ]. This case will be counted by xy(xp′n−i + yzpn−i), i ∈ {3, . . . , n}.
If the last vertex is dominating, then it dominates the second to the last vertex. This will

be counted by xyz.

Taking these di�erent cases together and rearranging the sums yields the theorem.

pn = x2p′n−2 + xyzpn−2 +
n∑
i=3

(
xy(xp′n−i + yzpn−i)

)
+ xyz + 1

= x2p′n−2 + xyz(1 + pn−2) + x2y

n−3∑
i=0

p′i + xy2z

n−3∑
i=0

pi + 1.

Corollary 5.55. Let Pn be a path with n vertices (n ≥ 2). Then

pn =xn + xy
n−3∑
i=0

(
xi+1 + yzpi + xi+1pn−i−3

)
+ xyz(1 + pn−2) + xy2

n−3∑
i=1

i∑
j=1

xjpi−j + 1.

Proof. Substituting p′n in Theorem 5.54 with Equation (5.14) yields

pn =x2

(
xn−2 + y

n−2∑
i=1

xi−1pn−2−i

)
+ xyz(1 + pn−2)

+ x2y
n−3∑
i=0

xi + y
i∑

j=1

xj−1pi−j

+ xy2z
n−3∑
i=0

pi + 1

=xn + x2y
n−2∑
i=1

xi−1pn−2−i + xyz(1 + pn−2) + x2y
n−3∑
i=0

xi

+ x2y2
n−3∑
i=1

i∑
j=1

xj−1pi−j + xy2z
n−3∑
i=0

pi + 1

=xn + xy
n−3∑
i=0

(
xi+1 + yzpi + xi+1pn−i−3

)
+ xyz(1 + pn−2) + xy2

n−3∑
i=1

i∑
j=1

xjpi−j + 1.



88 5 The Total Domination Polynomial

5.5.4 Y-Unique and Y-Equivalent Graphs

The great variety of graph invariants encoded in the trivariate domination polynomial natu-
rally leads to the question how well this polynomial distinguishes non-isomorphic graphs.

De�nition 5.56. Two graphs G and H are Y-unique if Y(G;x, y, z) = Y(H;x, y, z) implies
that H is isomorphic to G.

The following graphs are Y-unique:

• Paths,

• cycles,

• complete graphs,

• stars,

• star-shaped trees (see Theorem 5.59),

• all trees with up to 18 vertices (shown by computer search),

• all graphs with up to 5 vertices (shown by computer search).

The Y-uniqueness of paths, cycles, complete graphs and stars follows directly from the fact
that the number of the components and the degree sequence are encoded in the trivariate
domination polynomial (see Theorem 5.41 and 5.42). Figure (5.6) shows the smallest pair of
two non-isomorphic graphs with the same trivariate domination polynomial.

Fig. 5.6: Smallest pair of non-isomorphic graphs with the same trivariate domination polynomial.

Wang and Xu proved in [WX06] that some special trees, the T-shaped trees, are determined
by their Laplacian spectrum. We are able to prove similar results for the trivariate domination
polynomial. First we de�ne the T- and star-shaped trees.

De�nition 5.57. A star-shaped tree is a tree with exactly one vertex of degree m, with m ≥ 3,
and all other vertices have degree one or two. A star-shaped tree is called T -shaped if the vertex
v has the degree three.

Let m ≥ 3, 2 ≤ k1 ≤ · · · ≤ km and Pk1 , . . . , Pkm be paths with k1, . . . , km vertices, respec-
tively. Furthermore, let

⋂m
i=1 V (Pki) = {v}, with pairwise disjunct vertex sets V (Pk1)\{v}, . . . ,

V (Pkm)\{v}. Then T (k1, . . . , km) = Pk1 ∪ · · · ∪ Pkm is a star-shaped tree.

Theorem 5.58. Let G and H be two T -shaped trees with n vertices of the form T (l1, l2, l3)
and T (k1, k2, k3), respectively. Then

G ∼= H ⇔ Y(G;x, y, z) = Y(H;x, y, z).
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Fig. 5.7: A T - and a star-shaped tree.

Proof. ⇒: This direction follows directly from the de�nition of Y(G;x, y, z).
⇐: To prove this direction we show that if we have a trivariate domination polynomial of a

T -shaped tree, then the construction of the corresponding graph is unique. Every T -shaped
tree has the degree sequence (1, 1, 1, 2, . . . , 2, 3). This sequence can easily be extracted from
the trivariate domination polynomial (see Theorem 5.42). Two T -shaped trees of a given
degree sequence can be distinguished by the length of their branches.
Let nl(G) be the number of branches of length l inG. Then n1(G) = 3−[x2y1z0] Y(G;x, y, z),

because the only way to choose two adjacent vertices that dominate exactly one vertex, is
to choose a leaf and its neighbor, if the neighbor is not the center vertex v. Therefore,
[x2y1z0] Y(G;x, y, z) gives the number of branches which lengths are equal or greater than
two.
The number of branches of length l is:

nl(G) = 3−
l−1∑
i=1

ni(G)− [xl+1y1z0] Y(G;x, y, z). (5.15)

The construction of the graph is unique and therefore the theorem is proved.

We can use the technique of the proof of the last theorem to prove a generalization of it.

Theorem 5.59. Let G and H be two star-shaped trees with n vertices of the form T (l1, . . . , lm)
and T (k1, . . . , km), respectively. Then

G ∼= H ⇔ Y(G;x, y, z) = Y(H;x, y, z).

Proof. The argumentation of this proof is the same as in the previous theorem.

For general trees, we have the following conjecture.

Conjecture 5.60. Trees are determined by their trivariate domination polynomial.
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6 The Connected Domination Polynomial

In Chapter 5 we demand that the dominating vertices must be dominated by another domi-
nating vertex. This means that the induced subgraph of the dominating vertices G[W ] has
no isolated vertices, but the graph G[W ] can have more than one component. If we now ask
for dominating sets such that the dominating set has to induce a connected subgraph, then
we obtain the so-called connected dominating sets. The concept of connected dominating
sets was �rst introduced by Sampathkumar and Walikar [SW79]. They have applications in
wireless sensor networks, wireless ad hoc networks and in the connection with some broadcast
problems (see [GK98]).

De�nition 6.1. Let G = (V,E) be a graph. Then the vertex subset W ⊆ V is a connected
dominating set if N [W ] = V and k(G[W ]) = 1.

The �rst problem we are interested in is �nding the size of a smallest connected dominating
set of a given graph.

De�nition 6.2. [SW79] The connected domination number is the size of a smallest connected
dominating set of the graph G and is denoted by γc(G).

The connected domination number has a connection to the maximum number of leaves in
a spanning tree of G. It was �rst observed by Hedetniemi and Laskar [HL84].

De�nition 6.3. Let G = (V,E) be a graph. Then the maximum leaf number l(G) is the
largest possible number of leaves in a spanning tree of G.

Theorem 6.4. [HL84] Let G = (V,E) be a graph and l(G) the maximum leaf number of G.
Then the following equation holds:

|V | = γc(G) + l(G).

The problem to decide if a graph has a connected dominating set of size at most k is a NP-
complete problem [GJ79]. The corresponding counting problem is in ]P. For the computation
of the connected domination number, a wide range of approximation algorithms, lower and
upper bounds are known (see [GK98]). The fastest algorithm known so far to compute
the connected domination number has a running time of O(1.9407n) [FGK08]. But we are
interested in counting all connected dominating sets of the graph. On this account, we de�ne
the connected domination polynomial which counts the number of the connected dominating
sets of di�erent sizes.

De�nition 6.5. Let G = (V,E) be a graph and dck(G) be the number of the connected do-
minating sets of size k of the graph G. Then the connected domination polynomial is de�ned
as

Dc(G, x) =
n∑
k=1

dck(G)xk.
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Theorem 6.6. Computing the connected domination polynomial of a graph is NP-hard.

Proof. This follows immediately from a result of Garey and Johnson [GJ79].

Remark 6.7. The connected domination polynomial can also be written in the following way:

Dc(G, x) =
∑
W⊆V

G[W ]−connected
N [W ]=V

x|W |.

Remark 6.8. Every connected dominating set is a dominating set, but not every dominating
set is connected. Furthermore, every connected dominating set of size greater or equal to
two is a total dominating set, but not vice versa. So dck(G) ≤ dtk(G) ≤ dk(G) holds, for
k ∈ {2, 3, . . . , n}.

Remark 6.9. Let G = (V,E) be a graph and k(G) 6= 1. Then

Dc(G, x) = 0.

Theorem 6.10. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two vertex-disjoint graphs.
Then

Dc(G ∗H,x) =
(

(1 + x)|V (G)| − 1
)(

(1 + x)|V (H)| − 1
)

+ Dc(G, x) + Dc(H,x).

Proof. Every vertex in G is adjacent to every vertex in H. Hence, if at least one vertex in G
and at least one vertex in H are dominating, then these vertices are a connected dominating
set in G ∗H. If no vertex in G is dominating, then every connected dominating set in H
dominates the whole graph and vice versa.

As a direct consequence of the previous theorem, we obtain the following four corollaries
which show the calculation in special graph classes.

Corollary 6.11. Let G = (V,E) be the (n, k)-star Sn,k. Then

Dc(Sn,k, x) =
(

(1 + x)k − 1
)

(1 + x)n−k.

Corollary 6.12. Let G = (V,E) be the star Sn, with n ≥ 3. Then

Dc(Sn, x) = x(1 + x)n−1.

Corollary 6.13. Let G = (V,E) be the wheel graph Wn, with n ≥ 4. Then

Dc(Wn, x) = Dc(Cn−1, x) + x(1 + x)n−1.

Corollary 6.14. Let G = (V,E) be the fan graph Fn, with n ≥ 3. Then

Dc(Fn, x) = Dc(Pn−1, x) + x(1 + x)n−1.

Theorem 6.15. Let G = (V (G), E(G)) be a connected graph and H = (V (H), E(H)) be a
graph which is vertex-disjoint to G. Furthermore, let |V (G)| = nG and |V (H)| = nH . Then

Dc(G ◦H,x) = xnG(1 + x)nGnH .
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Proof. Every vertex of G is an articulation in the corona graph and therefore every connected
dominating set has to contain all vertices of G. All vertices of the nG copies of H are adjacent
to such a dominating vertex and therefore they can either be in a connected dominating set
or not.

The next theorem shows a result for the sum over all connected domination polynomials of
the vertex induced subgraphs of a given graph G.

Theorem 6.16. Let G = (V,E) be a connected graph. Then∑
W⊆V

(−1)|W |Dc(G[W ], x) = 1 + (−x)|V |.

Proof. See [KPT13] and the proof of Theorem 5.5.

Together with the type λG (see De�nition 2.8) of the graph G we obtain the next corollary.

Corollary 6.17. Let G = (V,E) be a graph. Then∑
W⊆V

(−1)|W |Dc(G[W ], x) = 1 +
∑
i∈λG

(−x)i. (6.1)

Proof. Let V1, V2, . . . , Vk be the vertex sets of the k components of the graph G. Then we can
write the left hand side of the corollary in the following way:

∑
W⊆V

(−1)|W |Dc(G[W ], x) = 1 +

k∑
i=1

∑
W⊆Vi
W 6=∅

(−1)|W |Dc(G[W ], x)

= 1 +
k∑
i=1

(−x)|Vi|.

Applying the Möbius inversion to Equation (6.1) yields the following corollary.

Corollary 6.18. Let G = (V,E) be a graph. Then

Dc(G, x) =
∑
W⊆V

(−1)|W |
∑

i∈λG[W ]

(−x)i.

A consequence of the previous corollary is that we can calculate the number of connected
dominating sets of a graph as the sum over the di�erence between the number of the even
and the odd components of the vertex induced subgraphs of G.

Corollary 6.19. Let G = (V,E) be a graph, ke(G) the number of the components of even
order and ko(G) the number of components of odd order. Then the number of connected
dominating sets in G can be calculated with

Dc(G, 1) =
∑
W⊆V

(−1)|W | (ke(G[W ])− ko(G[W ])) .
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6.1 Recurrence Equations and Separating Vertex Sets

With the Corollary 6.18, we easily obtain a recurrence equation for the connected domination
polynomial.

Theorem 6.20. Let G = (V,E) be a connected graph and u be a vertex of the graph. Then

Dc(G, x) = Dc(G− u, x) +
∑

u∈W⊆V
G[W ]−conn.

(
(−1)|W |Dc(G−N [W ], x) + 0|V |−|N [W ]|x|W |

)
.

Proof. Using Corollary 6.18, we obtain:

Dc(G, x) =
∑
W⊆V

(−1)|W |
∑

i∈λG[W ]

(−x)i

=
∑

W⊆V \{u}

(−1)|W |
∑

i∈λG[W ]

(−x)i +
∑

u∈W⊆V
(−1)|W |

∑
i∈λG[W ]

(−x)i

= Dc(G− u, x) +
∑

u∈W⊆V
G[W ]−conn.

(−1)|W |
∑

U⊆V \N [W ]

(−1)|U |
∑

i∈λG[W∪U ]

(−x)i

= Dc(G− u, x) +
∑

u∈W⊆V
G[W ]−conn.

(−1)|W |
∑

U⊆V \N [W ]

(−1)|U |

(−x)|W | +
∑

i∈λG[U ]

(−x)i


= Dc(G− u, x) +

∑
u∈W⊆V

G[W ]−conn.

(−1)|W |
∑

U⊆V \N [W ]

(−1)|U |(−x)|W |

+
∑

u∈W⊆V
G[W ]−conn.

(−1)|W |
∑

U⊆V \N [W ]

(−1)|U |
∑

i∈λG[U ]

(−x)i

= Dc(G− u, x) +
∑

u∈W⊆V
G[W ]−conn.
N [W ]=V

x|W | +
∑

u∈W⊆V
G[W ]−conn.

(−1)|W |Dc(G−N [W ], x)

= Dc(G− u, x) +
∑

u∈W⊆V
G[W ]−conn.

(
(−1)|W |Dc(G−N [W ], x) + 0|V |−|N [W ]|x|W |

)
.

Another way to obtain a recurrence equation is to look at a speci�c vertex and its neigh-
borhood. For such a sort of recurrence equation we need the de�nition of pcu(G).

De�nition 6.21. Let G = (V,E) be a graph. Then pcu(G) is the connected domination
polynomial of the graph G−N [u] under the condition that all vertices in N(u) are dominated
by a vertex in G−N [u].

With this de�nition, we can prove the following theorem.

Theorem 6.22. Let G = (V,E) be a graph and u be a vertex of the graph. Then

Dc(G, x) = Dc(G− u, x) + xDc(G/u, x)− (1 + x)pcu(G) + x2
∑

w∈N(u)

0|V |−|N [{u,w}]|.
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Proof. The argumentation is the same as in the proof of Theorem 5.14, except for the sum.
Suppose that u and v ∈ N(u) are dominating vertices and no other vertex in N [{u, v}] is
dominating. Then {u, v} is only a connected dominating set if and only if N [{u, v}] = V .

The �problem� with this recurrence equation is that the polynomial pcu(G) is a new poly-
nomial. But in some special cases this polynomial becomes zero and we obtain some simple
recurrence equations.

Corollary 6.23. Let G = (V,E) be a graph. If two vertices u, v ∈ V exist with N(v) ⊆ N(u),
then

Dc(G, x) = Dc(G− u, x) + xDc(G/u, x) + x2
∑

w∈N(v)

0|V |−|N [{u,w}]|.

Corollary 6.24. Let G = (V,E) be a graph. If two vertices u, v ∈ V exist with N [v] ⊆ N [u]
and N(u) forms a clique in the graph, then

Dc(G, x) = (1 + x) Dc(G− u, x) + x2
∑

w∈N(v)

0|V |−|N [{u,w}]|.

It is also possible to prove a recurrence equation with respect to the deletion of a vertex,
the deletion of edges between adjacent vertices and the combination of these two operations.

Theorem 6.25. Let G = (V,E) be a graph. Then

Dc(G, x) = Dc(G− u, x) + Dc(G� u, x)−Dc(G} u, x).

Proof. To prove the theorem, we use the idea of the proof of the Theorem 5.22. Applying the
Equations (2.1) to the Theorem 6.22 yields

Dc(G, x)−Dc(G− u, x) =xDc(G/u, x)− (1 + x)pcu(G)

+ x2
∑

w∈N(u)

0|V |−|N [{u,w}]|

=xDc((G� u)/u, x)− (1 + x)pcu(G� u)

+ x2
∑

w∈N(u)

0|V |−|N [{u,w}]|. (6.2)

Now we apply the Theorem 6.22 to the graph G� u:

Dc(G� u, x)−Dc((G� u)− u, x) =xDc((G� u)/u, x)− (1 + x)pcu(G� u)

+ x2
∑

w∈N(u)

0|V |−|NG�u[{u,w}]|. (6.3)

Observe that NG(u) = NG�u(u) and NG[{u,w}] = NG�u[{u,w}]. These two observations
together with the Equations (6.2) and (6.3) give the theorem.

Corollary 6.26. Let G = (V,E) be a graph such that u and w are adjacent vertices of the
graph with N [w] ⊆ N [u]. Then

Dc(G, x) = Dc(G− u, x) + Dc(G� u, x).

Remark 6.27. Let G = (V,E) be a graph and e ∈ E be an edge of the graph. Then every
connected dominating set in G− e is also connected dominating in G.
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If a graph has a separating vertex set, then it is possible for many graph polynomials to
�nd a splitting formula. In the case of the connected domination polynomial we can prove
such a result if the separating vertex set is a clique.

Theorem 6.28. Let G = (V,E) be a graph, {G1, G2, X} be a splitting of G and X induces a
clique in the graph. Then

Dc(G, x) =
1

(1 + x)2

∑
Y⊆X
|Y |≥1

x|Y |−2 Dc(G1 − (X − Y )B(Y, x)

Dc(G2 − (X − Y )B(Y, x).

Proof. In the separating vertex set X, there must be at least one dominating vertex and
therefore the other vertices in the separating set are dominated. So, if in the graph G1 the
vertices in Y ⊆ X are dominating, we can remove the vertices in X−Y from G1. Additionally,
we can contract the vertices of Y to a new vertex y and remove parallel edges because all
vertices in X are pairwise adjacent and all vertices in Y must be dominating. Then we add
a new adjacent vertex to the vertex y, to guarantee that the vertex y is dominating. The
new vertex yields the term (1 + x) in the polynomial because the additional vertices can
either be dominating or not, but the vertex y occurs in every connected dominating set in
G1− (X −Y )B(Y . Then we multiply the polynomial with the corresponding one of G2 and
x|Y | and divide it by x2(1 + x)2 for the double counted vertices.

Corollary 6.29. Let G = (V,E) be a graph and {G1, G2, {v}} be a splitting of G. Then

Dc(G, x) =
Dc(G1 + {v, · }, x) Dc(G2 + {v, · }, x)

x(1 + x)2
.

6.2 Irrelevant Edges and Vertices

In this section we characterize the essential vertices and the irrelevant edges and vertices of a
graph.

De�nition 6.30. Let G = (V,E) be a connected graph. A vertex v of the graph is called
essential if Dc(G− v, x) = 0 and it is called irrelevant if

Dc(G, x) = (1 + x) Dc(G− v, x).

Moreover, an edge e ∈ E of the graph is called irrelevant if Dc(G, x) = Dc(G− e, x).

An essential vertex is included in every connected dominating set of the graph. This leads
to the following lemma.

Lemma 6.31. A vertex v of a connected graph G = (V,E) is essential if and only if v is an
articulation.

Proof. The graph is disconnected after the removal of the articulation v and therefore Dc(G−
v, x) = 0. Thus, every articulation is essential.

Suppose v is an essential vertex, but not an articulation. Then the set V \v is a connected
dominating set in G, which is a contradiction to the assumption that v is essential.
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The characterization of the essential vertices together with Theorem 6.25 yields the next
corollary.

Corollary 6.32. Let G = (V,E) be a graph and u be an articulation. Then

Dc(G, x) = Dc(G� u, x).

The next theorem characterizes the irrelevant edges of a graph. We call two essential
vertices essentially connected if there exist a path between them which only consists of essential
vertices. If not such a path exists, then we call the two vertices essentially non-connected.

Theorem 6.33. Let G = (V,E) be a connected graph and e = {u, v} be an edge of the graph.
Then e is an irrelevant edge if and only if its end vertices are adjacent to articulations which
are essentially connected in G− e.

Proof. �⇐�: Suppose that the articulation w is the common neighbor of the vertices u and
v. Then u and v will be dominated from w and the connectedness of dominating vertices
depends not on the existence of the edge e.
Suppose now that the vertex u is adjacent to the articulation w and v adjacent to the

articulation x (see Figure 6.1). Furthermore, let x and w be essentially connected. Then
every dominating set which is connected in G is also connected in G− e.

e
u v

w x

Fig. 6.1: Graph with an irrelevant edge e.

�⇒�: To prove this direction we distinguish three di�erent cases: The vertices u and v are
not adjacent to an articulation, one of them is adjacent to an articulation and both vertices
are adjacent to an articulation but the articulations are essentially non-connected.
1. Suppose that e = {u, v} is an irrelevant edge of the graph G and no neighbor of u and

no neighbor of v is an articulation. Then it exists at least one path between u and v without
e in G, otherwise G − e is not connected. It remains to show that there exist at least one
connected dominating set in G, which is not connected dominating in G − e. Let W ⊆ V
be a connected dominating vertex set of G, such that u, v ∈ W , but the vertices u and v
are not connected by a path of dominating vertices. Such a connected dominating vertex set
exists because of the fact that u and v are essentially non-connected in G − e. Then W is a
connected dominating set in G, but not in G− e and therefore e is not irrelevant.
2. To show this case we can use the argumentation of the case one (see Figure 6.2).
3. Suppose that e = {u, v} is an irrelevant edge of the graph G and they are adjacent to

two articulations w and x which are essentially non-connected (see Figure 6.2). Then there
exist at least one non-essential vertex on every path between w and x. If these vertices are
non-dominating, then the resulting dominating set is non-connected in G − e and therefore
the edge e is not irrelevant.

Remark 6.34. If e and f are two irrelevant edges in G, then f is not necessarily an irrelevant
edge in G− e (e.g. see Figure 6.3).
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e
e e

1. 2. 3.

u v

w x
u v

u

v

w

Fig. 6.2: Dominating vertex sets (red) which are connected in G, but non-connected in G− e.

e

f f

G− e−−−→

Fig. 6.3: Graph with two irrelevant edges e and f (left), whereas f is not irrelevant in G− e.

Lemma 6.35. Let G = (V,E) be a graph, v ∈ V be a vertex, Wv be the set of connected
dominating set of G− v and W be the set of connected dominating sets of G. The vertex v of
G is irrelevant if and only if W =Wv ∪ {W ∪ {v} : W ∈ Wv}.

Proof. The proof follows directly from the de�nition of the irrelevant vertices.

Theorem 6.36. Let G = (V,E) be a graph. A vertex v ∈ V is irrelevant if and only if every
incident edge is an irrelevant edge in G and the adjacent articulations induce a connected
subgraph.

Proof. �⇐�: Suppose that all incident edges of v ∈ V are irrelevant. Let e = {u, v} ∈ E be
such an edge, then u must be adjacent to an articulation and therefore it will be dominated
from this vertex. Because of the fact that all adjacent articulations induce a connected
subgraph, the vertex v is irrelevant.

�⇒�: Suppose now that v ∈ V is an irrelevant vertex and e = {u, v} ∈ E is an incident
edge which is not irrelevant in G. Then u is not adjacent to an articulation which is essen-
tially connected to an adjacent articulation of v. Therefore, we can construct a connected
dominating set W , with u, v ∈W and all adjacent articulations of v are in W , such that v is
an articulation in G[W ] (see Figure 6.4), which is a contradiction (follows from Lemma 6.35).
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e
v

u

Fig. 6.4: Graph with non-irrelevant vertex v.

6.3 Special Graph Classes

For many graph classes, the calculation of the connected domination polynomial is easy. In
this section, formulas and recurrence equations will be proved for several graph classes.

6.3.1 Complete and Nearly Complete Graphs

The class of the complete graphs is the easiest graph class for the most problems. Every
non-empty subset of the vertex set is a connected dominating set. This leads directly to

Dc(Kn, x) = (1 + x)n − 1. (6.4)

In Section 2.2 the k-bounded complete graphs are introduced (see De�nition 2.12). We
can generalize the Equation (6.4) for the complete graph to the simple k-bounded complete
graphs and obtain the following theorem.

Theorem 6.37. Let G = (V,E) be a simple k-bounded complete graph Kk
n with n vertices

and the type Λ(Kk
n) = [n0, n1, n2, . . . , nl]. Then

Dc(K
k
n, x) = ((1 + x)n0 − 1) (1 + x)n−n0 +

l−1∑
i=1

((1 + x)ni − 1)

 l∏
j=i+1

(1 + x)nj − 1

 .
Proof. If at least one vertex of the clique of size n0 is in the dominating vertex set, then the
remaining n − n0 vertices can either be dominating or not. The so constructed dominating
set W induces a connected graph. Let now no vertex in V0, . . . , Vi−1 be dominating, but at
least one vertex in Vi. Then this vertex dominates all vertices in V \Vi, but the rest of the
vertices in Vi will not be dominated and the set induces no connected graph. Therefore, at
least one vertex in Vi+1, . . . , Vl must be dominating and the theorem follows.

The second way to obtain nearly complete graphs is to remove a matching from the complete
graph.

Theorem 6.38. Let Kn = (V,E) be a complete graph and M ⊂ E be a matching of the graph
with m = |M |. Then

Dc(Kn −M,x) = (1 + x)n −mx2 − 2mx− 1.

Proof. Every vertex subset W of size of at least one is a connected dominating set, except
for those vertex subsets of size two which consist of two non-adjacent vertices and the vertex
subsets which consist of one vertex with degree n − 2. There are m possibilities to choose
such a vertex pair and 2m possibilities to choose a single vertex with degree n− 2.
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Corollary 6.39. Let Kn = (V,E) be a complete graph and M ⊂ E be a perfect matching of
it. Then

Dc(Kn −M,x) = (1 + x)n − n

2
x2 − nx− 1.

Theorem 6.40. Let G = (V,E) be a complete graph with k holes. Let ni be the size of the
i-th hole in the graph and mj =

∑j
i=1 ni, for j ∈ {1, . . . , k}. Then

Dc(G, x) = (1 + x)n−mk +
k∑
i=1

[(
(1 + x)n−mi − 1

)
((1 + x)ni − 1) + Dc(Cni , x)

]
− 1.

Proof. Apply Theorem 6.10 iteratively to the holes and the rest of the graph.

Corollary 6.41. Let G = (V,E) be a complete graph with k anti-holes. Let ni be the size of
the i-th anti-hole in the graph and mj =

∑j
i=1 ni, for j ∈ {1, . . . , k}. Then

Dc(G, x) = (1 + x)n−mk +

k∑
i=1

[(
(1 + x)n−mi − 1

)
((1 + x)ni − 1) + Dc(Cni , x)

]
− 1.

6.3.2 Complete and Nearly Complete Bipartite Graphs

Theorem 6.42. Let Km,n = (V1 ∪ V2, E) be a complete bipartite graph with |V1| = n and
|V2| = m. Then

Dc(Km,n, x) = ((1 + x)n − 1) ((1 + x)m − 1) .

Proof. If we choose at least one vertex from V1 and V2, then all vertices are dominated and
the vertex subset is connected.

Theorem 6.43. Let G = (V1 ∪ V2, E) be a 1-bounded bipartite graph with |V1| = n, |V2| = m
and let k be the number of vertices in V1 with degree m− 1. Then

Dc(G, x) =
(

(1 + x)n−k − 1
)(

(1 + x)m−k − 1
)

(1 + x)2k

+ ((1 + x)k − 1− kx)(1 + x)k
[(

(1 + x)n−k − 1
)

+
(

(1 + x)m−k − 1
)]

+
(

(1 + x)k − 1− kx
)2
−
(
k

2

)
x4.

Proof. To prove the theorem, we distinguish three cases with respect to the number of the
dominating vertices of degree m in V1 and of degree n in V2. Let W1 ⊆ V1 be the vertices in
V1 which have degree m and W2 ⊆ V2 be the vertices in V2 which have degree n. Additionally
let Ui = Vi\Wi, for i ∈ {1, 2}. If in W1 and as well in W2 at least one vertex is dominating,
then all other vertices are dominated and the dominating vertices are connected. If only in
W1 at least one vertex is dominating but no vertex in W2 is dominating, then in U2 at least
two vertices must be dominating to dominate all vertices in V1. This case will be counted by

((1 + x)k − 1− kx)
(

(1 + x)n−k − 1
)

(1 + x)k.

The same argumentation holds if only in W2 at least one vertex is dominating, but no vertex
in W1 is dominating. If in W1 and in W2 no vertex is dominating, then in U1 and U2 at least
two vertices must be dominating to dominate all other vertices and to induce a connected
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vertex subset. But if we choose two vertices in U1 and the two corresponding vertices in
U2, then the induced subgraph is the graph P2 ∪ P2 which is not connected. Therefore, the
polynomial for this case is (

(1 + x)k − 1− kx
)2
−
(
k

2

)
x4

and the theorem follows.

Corollary 6.44. Let Kn,n = (V1 ∪ V2, E) be a complete bipartite graph, with |V1| = |V2| = n
and M ⊂ E be a perfect matching of the graph. Then

Dc(Kn,n −M,x) = ((1 + x)n − 1− nx)2 −
(
n

2

)
x4.

6.3.3 Trees, Paths and Cycles

Theorem 6.45. Let G = (V,E) be a tree with n vertices and k leaves. Then the connected
domination polynomial can be calculated by

Dc(G, x) = xn−k(1 + x)k.

Proof. Let L be the set of the leaves of the tree. Then V \L is a subset of every connected
dominating set because if one vertex from V \L is non-dominating, then the dominating set
cannot be connected. The leaves of the tree can either be dominating or not.

A nice consequence of the previous theorem is that we obtain a simple formula for the path
Pn.

Corollary 6.46. Let G = (V,E) be the path Pn, then

Dc(Pn, x) = xn + 2xn−1 + xn−2.

A more general graph class are the simple k-paths (see De�nition 2.24).

De�nition 6.47. Let G = (V,E) be a simple k-path. Then f
(k)
n is the connected domination

polynomial of the simple k-path P
(k)
n under the condition that the �rst k vertices are already

dominated.

Theorem 6.48. Let G = (V,E) be a simple k-path P
(k)
n with n ≥ k + 2. Then

Dc(P
(k)
n , x) = x

k+1∑
i=1

f
(k)
n−i

and

f (k)
n = x

k∑
i=1

f
(k)
n−i.

The initial conditions are

f
(k)
i = (1 + x)i, ∀i ∈ {1, . . . , k}.
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Proof. At least one of the �rst k+1 vertices in the k-path must be dominating and if a vertex
is dominating, then the next k vertices will be dominated. So we obtain the �rst recurrence
equation.
If the �rst k vertices are already dominated, then at least one of these k vertices must

be dominating to obtain a connected dominating set. This leads to the second recurrence
equation. If the k-path has at most k vertices which are already dominated, then they can
either be dominating or not.

Remark 6.49. It is also possible to use Theorem 6.28 to calculate the connected domination

polynomial of a k-path P
(k)
n .

Remark 6.50. Let Dc(P
(k)
n , x) be the connected domination polynomial of the simple k-path

P
(k)
n . Then Dc(P

(k)
n , 1) yields the number of 01-words of length n, with no subword with k

consecutive zeros, except of the �rst and the last k digits.

For the connected domination polynomial it is also possible to prove a short equation for
the cycle in contrast to other graph polynomials like the domination polynomial.

Theorem 6.51. Let G = (V,E) be the cycle Cn. Then

Dc(Cn, x) = xn + nxn−1 + nxn−2.

Proof. If one vertex of the cycle is non-dominating, then one of both neighbors must be
dominating and there cannot be two non-adjacent non-dominating vertices. The only possible
way to choose non-dominating vertices is to choose one single vertex or two adjacent vertices.
With these considerations the theorem follows.

Theorem 6.52. Let G = (V,E) be the anti-cycle Cn. Then

Dc(G, x) = (1 + x)n − 1− nx− 2nx2 − nx3.

Proof. Every vertex of the anti-cycle is non-adjacent to two other vertices. Therefore every
vertex subset of size one is a non-dominating set, and every vertex subset of size two with two
non-adjacent vertices is not connected. Additionally, every vertex subset of size two, where
the two vertices have a common non-adjacent vertex, is non-dominating. Furthermore, if we
add the common non-neighbor to these vertex subsets we obtain a dominating set which is
not connected. All other vertex subsets are connected dominating sets.

6.3.4 Some Product Graphs

In this section some equations for the calculation of the connected domination polynomial in
product graphs will be given. The �rst product of interest is the strong product. First we
prove a theorem about the strong product of a complete graph and an arbitrary graph.

Theorem 6.53. Let G = (V,E) be a graph. Then the connected domination polynomial of
the strong product of the complete graph Kn and the graph G can be obtained by

Dc(G�Kn, x) = Dc (G, (1 + x)n − 1) .

Proof. Let W ⊆ V (G) be a connected dominating set in G. Then vertex set {(v, u) : v ∈
W,u ∈ V (Kn)} is connected dominating in the product graph G � Kn. This yields the
theorem.
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It is already known that the connected domination number γc of the ladder graph (Pn�P2)
equals n [Weid]. There are also some known recurrence equations for graph polynomials, e.g.
for the chromatic polynomial, the independence polynomial and the matching polynomial.
The next theorem yields a result for the connected domination polynomial for ladder graphs.

Theorem 6.54. Let pn be the connected domination polynomial of the product graph Pn�P2

(n ≥ 3), p′n be the polynomial under the condition that one vertex in the last row is dominating
and p′′n be the polynomial under the condition that all vertices in the last row of the product
graph are dominating. Then

pn = x(1 + x)p′n−1 + (1 + x)2p′′n−1,

p′n = xp′n−1 + 2xp′′n−1,

p′′n = x2(p′n−1 + p′′n−1).

The initial conditions are

p′2 = 2x2 + 2x3 and p′′2 = x2 + 2x3 + x4.

Proof. At least one vertex of the second to last row is included in each connected dominating
set. If exactly one vertex in the second to last row is dominating, then the vertex in the same
column (and the last row) must be dominating and the other vertex in the last row can either
be dominating or not. If the two vertices of the second to last row are dominating, then the
vertices in the last row are dominated and therefore they can either be dominating or not.
This yields the equation for the pn.

It remains to prove the equations for the polynomials p′n and p′′n. The idea is the same as
before and Figure 6.5 illustrates the derivation of the two equations. The red vertices are the
dominating vertices in the graph.

Fig. 6.5: Two possible situations for adding a row to p′n−1 (left) and to p′′n−1 (right).

For the lexicographic product of two paths a nice theorem can be proved.

Theorem 6.55. Let Pn and Pm be two paths, with m,n ≥ 3. Then

Dc(Pn · Pm, x) = (1 + x)2m((1 + x)m − 1)n−2.

Proof. In each row, beginning from the second up to the second to last row, at least one
vertex has to be dominating to obtain a connected subset. These sets are also dominating
sets in the whole graph and therefore the theorem follows.
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6.4 Connected Domination Reliability Polynomial

Wireless sensor networks (WSNs) consist of small nodes with sensing, computation and wire-
less communications capabilities. They are widely used in many applications, including tra�c
control, geo-fencing of gas or oil pipelines, air pollution monitoring, and machine health moni-
toring (see [He12]). Suppose now that the nodes are subject to random failure, e.g. technical
fault or energy issue, and the links are perfectly reliable. One may ask: What is the prob-
ability that in such a probabilistic WSN a set of connected operating nodes exist, such that
every failed node is monitored? Such a set of nodes build a connected dominating set in the
corresponding network.

De�nition 6.56. Let G = (V,E) be a connected graph and the vertices of the graph are
subject to random and independent failure with probability q = 1 − p. Then the connected
domination reliability polynomial DRelc(G, p) is de�ned as follows

DRelc(G, p) =
n∑
k=1

dck(G)pk(1− p)n−k.

This reliability polynomial can be obtained from the connected domination polynomial.

Lemma 6.57. Let G = (V,E) be a graph and Dc(G, x) be the connected domination poly-
nomial of G. Then the connected domination reliability polynomial can be calculated in the
following way:

DRelc(G, p) = (1− p)n Dc(G,
p

1− p
).

Proof. We simply use the de�nition of the connected domination reliability polynomial and
perform some substitutions:

DRelc(G, p) =

n∑
k=1

dck(G)pk(1− p)n−k

= (1− p)n
n∑
k=1

dck(G)

(
p

1− p

)k
= (1− p)n Dc(G,

p

1− p
).

Corollary 6.58. Let G = (V,E) be a graph and DRelc(G, p) be the connected domination
reliability polynomial. Then

Dc(G, x) = (1 + x)n DRelc(G,
x

1 + x
).

The connected domination reliability polynomial yields a lower bound for the residual net-
work reliability R1(G, p) (De�nition 2.50) of the graph G (see Figure 6.6).

Lemma 6.59. Let G = (V,E) be a connected graph, DRelc(G, p) be the connected domination
reliability polynomial and R1(G, p) be the residual network reliability of G. Then

DRelc(G, p) ≤ R1(G, p), for 0 ≤ p ≤ 1.
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Fig. 6.6: Reliability functions of the diamond graph (red), a random tree with 8 vertices and 4 leaves (black),
the complete graph K6 (blue), and the corresponding residual network reliability (dashed).
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7 The Bipartition Polynomial

The domination polynomial exclusively counts dominating vertex subsets. A promising way
to re�ne this polynomial is to encode the size of the neighborhood of a (not necessarily
dominating) vertex subset W , e.g. x|W |y|N(W )|. Nevertheless, we call the vertices in such a
vertex subset W dominating vertices. Let now ∂W be the set of all edges of G with exactly
one of their end vertices in W . As a further generalization of the domination polynomial, we
count the edges that are necessary in order to cover a subset of NG(W ) which provides the
following de�nition.

De�nition 7.1. The bipartition polynomial is de�ned in the following way:

B(G;x, y, z) =
∑
W⊆V

x|W |
∑

F⊆∂W
y|NG〈F 〉(W )|z|F |.

It follows directly from the de�nition that the bipartition polynomial is multiplicative with
respect to components of a graph. Let G = (V,E) be a graph with two components G1 and
G2, then

B(G;x, y, z) = B(G1;x, y, z) B(G2;x, y, z).

The bipartition polynomial has some nice representations (see [Dod+15]). One of these
representations is a multiplicative representation, which is useful for many proofs.

Theorem 7.2. [Dod+15] The bipartition polynomial has the following multiplicative repre-
sentation:

B(G;x, y, z) =
∑
W⊆V

x|W |
∏

v∈NG(W )

(
y
(

(1 + z)|NG(v)∩W | − 1
)

+ 1
)
. (7.1)

Recurrence equations with respect to vertex or edge operations exist for many graph poly-
nomials. In contrast, for the bipartition polynomial no such nice results can be proved.

Theorem 7.3. Let G = (V,E) be an arbitrary graph and v be a vertex of this graph. Then
no linear recurrence equation with the operations G − v, G/v, G −N [v], G/N [v] and G } v
exists. More precisely, no rational functions a, b, c, d, e ∈ R(x, y, z) exists that satisfy

B(G;x, y, z) = aB(G− v;x, y, z) + bB(G/v;x, y, z) + cB(G−N [v];x, y, z)

+ dB(G/N [v];x, y, z) + eB(G} v;x, y, z).

Proof. The proof uses the idea of the proof of Theorem 3.8.

In spite of this result, it is sometimes possible to prove a recurrence equation if the graph has
some special properties. The following theorem gives a result of this kind for the bipartition
polynomial of a graph having a vertex of degree one that is adjacent to a degree-two vertex.
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Theorem 7.4. Let G = (V,E) be a graph, u,w ∈ V , e = {u,w} ∈ E, degG(u) = 1 and
v /∈ V . Then the bipartition polynomial satis�es:

B(G+ v + {u, v};x, y, z) =(1 + x) B(G;x, y, z) + xyz(2 + z) B(G− u;x, y, z)

− xyz2(1− y) B(G†e;x, y, z).

Proof. The bipartition polynomial can be split into three parts with respect to the vertex
u. The �rst part Bu

1(G;x, y, z) is the domination polynomial under the assumption that the
vertex u is dominating. The second part Bu

2(G;x, y, z) is the polynomial under the assumption
that u is non-dominating, but u is dominated in G. The last case is that u is not a dominating
vertex and is non-dominated in G. Observe that the sum of these three polynomials is the
bipartition polynomial B(G;x, y, z) of the graph G. We obtain:

B
u
1(G;x, y, z) =

∑
W⊆V
u∈W

x|W |
∑

F⊆∂W
y|N(V,F )(W )|z|F |, (7.2)

B
u
2(G;x, y, z) =

∑
W⊆V
u/∈W

x|W |
∑

F⊆∂W
u∈N(V,F )(W )

y|N(V,F )(W )|z|F |, (7.3)

B
u
3(G;x, y, z) =

∑
W⊆V
u/∈W

x|W |
∑

F⊆∂W
u/∈N(V,F )(W )

y|N(V,F )(W )|z|F |. (7.4)

For the sake of convenience we write Bu
i (G) instead of Bu

i (G;x, y, z), for i ∈ {1, 2, 3}. Con-
sidering the neighbor w ∈ V of u, we can simplify the three polynomials Bu

1(G), Bu
2(G) and

Bu
3(G). If u is a dominating vertex, we have three possible cases for the vertex w. If w is a

dominating vertex, the edge {u,w} has no in�uence on the polynomial. If w is dominated in
G − u, we can either add the edge {u,w} or leave it out. This leads to (1 + z) Bw

2 (G − u).
If w is non-dominated, then we can either include the edge in the selected edge subset F , so
that w will be dominated by u, or we leave the edge out. This leads to (1 + yz) Bw

3 (G − u).
With these considerations we obtain:

B
u
1(G) =

∑
W⊆V
u∈W

x|W |
∑

F⊆∂W
y|N(V,F )(W )|z|F |

=x
(

B
w
1 (G− u) + (1 + z)B

w
2 (G− u) + (1 + yz)B

w
3 (G− u)

)
. (7.5)

In the second case, u is dominated by w in G. So the vertex w must be dominating and
the edge {u,w} must be counted. Due to the fact that deg(u) = 1, we can remove the vertex
u and the edge {u,w} in the two sums.

B
u
2(G) =

∑
W⊆V
u/∈W

x|W |
∑

F⊆∂W
u∈N(V,F )(W )

y|N(V,F )(W )|z|F |

=
∑

W⊆V \{u}

x|W |
∑

F⊆∂W
u∈N(V,F )(W )

y|N(V,F )(W )|z|F |

= yz
∑

W⊆V \{u}
w∈W

x|W |
∑

F⊆∂W\{w,u}

y|N(V,F )(W )|z|F |

= yzB
w
1 (G− u). (7.6)
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In the third case, u is not a dominating vertex and it is non-dominated. This means that we
can remove the vertex u and the edge {u,w} from the two sums and calculate the polynomial
in G− u.

B
u
3(G) =

∑
W⊆V
u/∈W

x|W |
∑

F⊆∂W
u/∈N(V,F )(W )

y|N(V,F )(W )|z|F |

=
∑

W⊆V \{u}

x|W |
∑

F⊆∂W\{w,u}

y|N(V,F )(W )|z|F |

= B(G− u;x, y, z). (7.7)

If we now add the vertex v and the edge {u, v} to the graph G, we can write the bipartition
polynomial as follows:

B(G+ v + {u, v};x, y, z) = (1 + x) B(G;x, y, z)

+ z (yB
u
1(G) + xB

u
2(G) + xyB

u
3(G)) . (7.8)

If the edge {u, v} is not used (or more precisely, it is not counted in the second sum of the
bipartition polynomial), then the vertex v can be dominating or not. This gives us the �rst
part of the sum. If the edge is used (either u or v is dominating), the vertex u can be in three
states. If u is a dominating vertex, then the new vertex v will be dominated by u. So we
obtain yzBu

1(G). If u in G is dominated, then v must be a dominating vertex. This leads to
xzBu

2(G). If u is non-dominating and is non-dominated, then v must be a dominating vertex.
This leads to the last part xyzBu

3(G).
The substitution of (7.5), (7.6) and (7.7) in Equation (7.8) yields:

B(G+ v + {u, v};x, y, z) = (1 + x) B(G;x, y, z)

+ z
[
yx
(

B
w
1 (G− u) + (1 + z)B

w
2 (G− u)

+ (1 + yz)B
w
3 (G− u)

)
+ xyzB

w
1 (G− u) + xyB(G− u;x, y, z)

]
= (1 + x) B(G;x, y, z)

+ z
[
yx
(

B(G− u;x, y, z) + zB
w
2 (G− u) + yzB

w
3 (G− u)

)
+ xyzB

w
1 (G− u) + xyB(G− u;x, y, z)

]
= (1 + x) B(G;x, y, z)

+ z
[
2xyB(G− u;x, y, z)

+ xyz (B
w
1 (G− u) + B

w
2 (G− u) + yB

w
3 (G− u))

]
= (1 + x) B(G;x, y, z)

+ z
[
(2xy + xyz) B(G− u;x, y, z)− xyz(1− y)B

w
3 (G− u)

]
= (1 + x) B(G;x, y, z)

+ z
[
(2xy + xyz) B(G− u;x, y, z)

− xyz(1− y) B(G− u− w;x, y, z)
]
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= (1 + x) B(G;x, y, z)

+ xyz(2 + z) B(G− u;x, y, z)− xyz2(1− y) B(G†e;x, y, z).

Corollary 7.5. From Theorem 7.4 we directly obtain a recurrence equation for the path Pn
(n ≥ 2):

B(Pn+1;x, y, z) = (1 + x) B(Pn;x, y, z) + xyz(2 + z) B(Pn−1;x, y, z)

− xyz2(1− y) B(Pn−2;x, y, z).

The initial conditions are

B(P0;x, y, z) = 1,

B(P1;x, y, z) = 1 + x,

B(P2;x, y, z) = (1 + x)2 + 2xyz.

Let B(G;x, y, z) be the bipartition polynomial of G. Then we de�ne

bik(G) = [xiyk]B(G;x, y, z)

and

bikl(G) = [xiykzl]B(G;x, y, z).

Theorem 7.6. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be graphs, n = |V (G1)|
and m = |V (G2)|. Then

B(G1 ∗G2;x, y, z) =
n∑
k=0

n−k∑
l=0

m∑
i=0

m−i∑
j=0

xk+iyl+jbkl(G1)bij(G2)(1 + z)kj+il

(y((1 + z)k − 1) + 1)m−i−j(y((1 + z)i − 1) + 1)n−k−l.

Proof. Suppose that Wi ⊆ V (Gi), Yi ⊆ V (Gi) and Zi = V (Gi)\Wi\Yi with Wi ∩ Yi = ∅,
for i ∈ {1, 2}. Furthermore, let |W1| = k, |Y1| = l, |W2| = i and |Y2| = j. Suppose
that the vertices in Wi are the dominating vertices in Gi and the vertices in Yi are the
vertices dominated by Wi. The polynomial bkl(G1)bij(G2) counts the possibilities to choose
such pairs of vertex subsets and the edges between them. In G1 ∗ G2 we have to count the
possibilities to choose edges between W1 and Y2 and W2 and Y1. Therefore, we obtain the
term (1 + z)kj+il. Additionally, the vertices in Z2 can be dominated by vertices in W1 and
the vertices in Z1 by vertices in W2, respectively. If we choose at least one edge between a
vertex of Z2 and an arbitrary vertex of W1, the vertices in Z2 are dominated. This is counted
by (y((1 + z)k − 1) + 1)m−i−j and yields the theorem.

Theorem 7.7. Let G = (V (G), E(G)) be a simple graph and n = |V (G)|. Then

B(G ∗K1;x, y, z) =x(1 + yz)n B(G;
x

1 + yz
,
y(1 + z)

1 + yz
, z)

+ yB(G;x(1 + z), y, z)− (y − 1) B(G;x, y, z).
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Proof. Let K1 = ({v}, ∅) be a graph with one vertex. If the vertex v is a dominating vertex,
then v dominates all vertices in G ∗K1 that are not already dominated. Additionally, we can
choose edges between v and vertices in G which are already dominated from other vertices in
G. This yields the �rst term of the sum:

x
∑

W⊆V (G)

x|W |
∑

F⊆∂W
y|N(V,F )(W )|(1 + yz)n−|W |−|N(V,F )(W )|(1 + z)|N(V,F )(W )|z|F |

= x(1 + yz)n
∑

W⊆V (G)

(
x

1 + yz

)|W | ∑
F⊆∂W

(
y(1 + z)

1 + yz

)|N(V,F )(W )|
z|F |.

If the vertex v is dominated, then we can choose an edge from every dominating vertex in G
to the vertex v, but at least one edge must be chosen. This leads to the second term in the
sum:

y
∑

W⊆V (G)

x|W |
(

(1 + z)|W | − 1
) ∑
F⊆∂W

y|N(V,F )(W )|z|F |.

If v is neither dominating nor dominated, then no edge between v and G occurs and we must
simply add B(G;x, y, z), which yields the theorem.

Corollary 7.8. Let Fn = (V,E) be a fan with n vertices. Then

B(Fn;x, y, z) =x(1 + yz)n B(Pn−1;
x

1 + yz
,
y(1 + z)

1 + yz
, z)

+ yB(Pn−1;x(1 + z), y, z)− (y − 1) B(Pn−1;x, y, z).

Corollary 7.9. Let Wn = (V,E) be a wheel with n vertices. Then

B(Wn;x, y, z) =x(1 + yz)n B(Cn−1;
x

1 + yz
,
y(1 + z)

1 + yz
, z)

+ yB(Cn−1;x(1 + z), y, z)− (y − 1) B(Cn−1;x, y, z).

7.1 Encoded Graph Invariants

From the bipartition polynomial a lot of graph invariants can be obtained. Such numeric
invariants are the order of the graph G

|V (G)| = deg(B(G;x, 1, 1))

and its size

|E(G)| = 1

2
[xyz]B(G, x, y, z).

The maximum size of an edge cut of G is given by

cmax(G) = deg(B(G, 1, 1, z))

which provides the number of maximum edge cuts[
zcmax(G)

]
B(G, 1, 1, z).
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Theorem 7.10. Let G = (V,E) be a simple graph with the bipartition polynomial B(G;x, y, z).
Then

δ(G) = min{i|[xzi] B(G;x, 1, z − 1) > 0},
∆(G) = max{i|[xzi] B(G;x, 1, z − 1) > 0}, and

]degi(G) = [xzi] B(G;x, 1, z − 1).

Proof. Substitute y with 1 and z with z − 1 in Equation (7.1). This yields

B(G;x, 1, z − 1) =
∑
W⊆V

x|W |
∏

v∈NG(W )

z|NG(v)∩W |.

Hence, the coe�cient of xzi in B(G;x, 1, z − 1) yields the number of vertices with exactly i
neighbors and the theorem follows.

Corollary 7.11. The number of isolated vertices iso(G) of the graph G = (V,E) can be
determined by

iso(G) = [x] B(G;x, 1,−1).

Moreover, the last results show that the degree generating function of a graph G = (V,E)
is ∑

v∈V
tdeg v =

[
x1
]
B(G;x, 1, t− 1).

Theorem 7.12. Let G = (V,E) be a graph with m edges. Then

sk = δk[x
kzm−(k2)−(n−k

2 )]zm B(G;x, 1, z − 1)

yields the number of splittings of the graph in two cliques with k and n− k vertices, with

δk =

{
1
2 , if k = n

2

1, otherwise.

Proof. The coe�cient of xk in the polynomial zm B(G;x, 1, 1
z−1) yields the number of edges in

the graph which are not between the k dominating vertices and the corresponding dominated
vertices. If the two sets, the dominating vertices W and the other vertices in V −W , are
cliques, then there must be m−

(
k
2

)
−
(
n−k

2

)
edges between the two sets. If k = n/2, then we

count every set of two cliques twice.

Corollary 7.13. Let cl be the number of l-cliques in the graph G = (V,E). Then

cn−1 = [xz(
n−1
2 )]zm B(G;x, 1,

1

z
− 1).

The bipartition polynomial encodes a variety of graph polynomials (see [Dod+15] and Fig-
ure 9.1 on page 129). The next theorem shows the connection to the domination polynomial.

Theorem 7.14. Let G = (V,E) be a graph, D(G, x) its domination polynomial and B(G;x, y, z)
its bipartition polynomial. Then

D(G, x) = [yn] B(G;xy, 1− y,−1).
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Proof. Observe that we have N(v)∩W 6= ∅, for all v ∈ N(W ). Now we substitute x with xy,
y with 1− y and z with −1 in Equation (7.1). This yields

B(G;xy, 1− y,−1) =
∑
W⊆V

(xy)|W |
∏

v∈N(W )

[
(1− y)

[
0|N(v)∩W | − 1

]
+ 1
]

=
∑
W⊆V

(xy)|W |
∏

v∈N(W )

y

=
∑
W⊆V

x|W |y|W |+|N(W )|.

All vertex subsetsW with |W |+|N(W )| = n are dominating sets and the theorem follows.

De�nition 7.15. Let G = (V,E) be a graph. Then the matching polynomial of G is the
ordinary generating function

µ(G, x) =
∑
i

mi(G)xi.

The coe�cient mk of the polynomial is the number of matchings of size k.

Remark 7.16. Sometimes the matching polynomial is de�ned as

µ(G, x) =
∑
i

(−1)imi(G)xn−2i.

Theorem 7.17. Let G = (V,E) be a graph and µ(G, x) be the matching polynomial of G.
Then

µ(G, x) =

bn2 c∑
k=0

(x
2

)k k∑
i=1

(−1)k−i
(
n− k − i
k − i

)
bikk(G).

Proof. Let G be a graph of order n and let k be a given positive integer. We use the ab-
breviations bi = bikk(G) and p = n − k. Let Di(G) be the set of all bipartite subgraphs
H = (X ∪ Y, F ) of G with |X| = i, |Y | = |F | = k, such that all vertices of Y have degree 1
in H. Hence the cardinality of Di(G) is bi. Observe that we consider X ∪ Y as an ordered
bipartition, which implies that bipartite subgraphs which are identical except that the sets
X and Y are exchanged are counted twice in bi. Let Ci(G) be the subset of Di(G) consisting
of those (ordered) bipartite subgraphs of G that do not have any isolated vertices in X and
de�ne ci = |Ci(G)|. As the end vertices of any edge in a matching can be arbitrarily assigned
to X or Y , we have 2kmk = ck. Each bipartite subgraph in Di(G) that contains exactly i− j
isolated vertices in X consists of a subgraph H from Cj(G) and a selection of i − j vertices
out of the n− k − j vertices that do not belong to H. Consequently, we obtain

bi =
i∑

j=1

(
n− k − j
i− j

)
cj

=

i∑
j=1

(
p− j
i− j

)
cj . (7.9)

The theorem states that

mk =
1

2k

k∑
i=1

(−1)k−i
(
n− k − i
k − i

)
bikk(G)
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and hence

ck =

k∑
i=1

(−1)k−i
(
p− i
k − i

)
bi.

Replacing k by j and substituting cj in (7.9) yields

bi =
i∑

j=1

(
p− j
i− j

) j∑
l=1

(−1)j−l
(
p− l
j − l

)
bl

=
∑
l

bl
∑
j

(
p− l
j − l

)(
p− j
i− j

)
(−1)j−l.

Thus it remains to prove that

∑
j

(
p− l
j − l

)(
p− j
i− j

)
(−1)j−l = δil.

Rearranging the binomial coe�cients yields

∑
j

(
p− l
j − l

)(
p− j
i− j

)
(−1)j−l =

(
p− l
p− i

)∑
j

(
i− l
i− j

)
(−1)j−l.

If i = l, then the last sum has only one non-vanishing term, which is 1. Otherwise, if i 6= l,
then the binomial coe�cient or the sum vanishes, which completes the proof.

The following theorems show connections of the bipartition polynomial to other graph
polynomials. These results can be found in [Dod+15].

Theorem 7.18. [Dod+15] Let B(G;x, y, z) be the bipartition polynomial and C(G; z) be the
cut generating function of the graph G. Then

C(G; z) =
1

2
B(G; 1, 1, z − 1).

Peter Tittmann [DT15] de�ned the extended cut polynomial

J(G;x, y) =
∑
W⊆V

x|W |y|E(W )|+|∂W |.

This polynomial can also be obtained from the bipartition polynomial in r-regular graphs.

Theorem 7.19. Let G = (V,E) be a r-regular graph and J(G;x, y) its extended cut polyno-
mial. Then

J(G;x, y) = B(G;x
√
yr, 1,

√
y − 1).

Proof. If G is a r-regular graph, then r|W | = 2|E(W )| + |∂W | and therefore |E(W )| =
1/2(r|W | − |∂W |). Using Equation (7.1) we can verify that

B(G;xtr, 1, z − 1) =
∑
W⊆V

x|W |tr|W |z|∂W |.
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Now replacing t with
√
yr and z with y√

y yields:

∑
W⊆V

x|W |
√
yr|W |

(
y
√
y

)|∂W |
=
∑
W⊆V

x|W |y1/2(r|W |−|∂W |)y|∂W |

=
∑
W⊆V

x|W |y|E(W )|y|∂W |

which proves the theorem.

Let G = (V,E) be a graph, then the Ising polynomial Z(G;x, y) is de�ned as follows

Z(G;x, y) = xnym
∑
W⊆V

x−|W |y−|∂W |.

Theorem 7.20. [Dod+15] The Ising polynomial of a graph G = (V,E) with n vertices and
m edges is given by

Z(G;x, y) = xnymB

(
G;

1

x
, 1,

1

y
− 1

)
.

Theorem 7.21. [Dod+15] Let G = (V,E) be a simple r-regular graph. Then the independence
polynomial of G is given by

I(G, t) = lim
x→0

B

(
G; txr, 1,

1

x
− 1

)
.

The great variety of graph invariants encoded in the bipartition polynomial leads to the
question how well this polynomial distinguishes non-isomorphic graphs. Figure 7.1 shows
the smallest pair of non-isomorphic graphs with the same bipartition polynomial. These
graphs were presented in [Mar14] as an example for non-isomorphic graphs with the same
Potts model partition function. We could show by exhaustive computer search that all non-
isomorphic trees with up to 15 vertices and all non-isomorphic graphs with up to 9 vertices
can be distinguished by their bipartition polynomial.

Fig. 7.1: The smallest pair of non-isomorphic graphs with the same bipartition polynomial.

7.2 Special Graph Classes

In this section we investigate the bipartition polynomial of some special graph classes. It is
obvious that the bipartition polynomial of the edgeless graph En is simply (1 + x)n. But
other graph classes are more interesting. In this section we show some results for complete
and nearly complete graphs, and substitution graphs.
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7.2.1 Complete and Nearly Complete Graphs

Theorem 7.22. Let Kn be a complete graph with n vertices. Then

B(Kn;x, y, z) =
n∑
k=0

(
n

k

)
xk(y(1 + z)k − y + 1)n−k.

Proof. Any vertex subset W of cardinality k in Kn has an open neighborhood of size n − k
and each vertex v of this neighborhood has exactly k edges that link v with a vertex in W .
We obtain

B(Kn;x, y, z) =

n∑
k=0

(
n

k

)
xk

n−k∑
j=0

(
n− k
j

)
yj((1 + z)k − 1)j .

Here (1+z)k−1 is the ordinary generating function for the choice of a nonempty subset of the
set of k edges that connect v with a vertex in W . Now the theorem follows by simpli�cation
of the inner sum using the binomial theorem.

With Theorem 7.7 we can calculate the bipartition polynomial for nearly complete graphs.
Let G = (V,E) be a nearly complete graph and let C ⊂ V be a maximum clique in G. In
the �rst step we calculate the bipartition polynomial of G−C and then add successively the
vertices of the clique C using Theorem 7.7.

In the following theorems we will give some explicit equations for some special nearly
complete graphs.

Theorem 7.23. Let n be an even number greater than or equal to two and let G = (V,E) be
a graph obtained from the complete graph Kn by removing a perfect matching. Then

B(G;x, y, z) =

n
2∑

k=0

(n
2

k

)
x2k

n
2
−k∑
i=0

(n
2 − k
i

)
2ixi

(
y (1 + z)2k+i−1 − y + 1

)i
(
y (1 + z)2k+i − y + 1

)n−2k−2i

Proof. If we remove a perfect matching in the complete graph, then there are n/2 pairs of non-
adjacent vertices. In the theorem, we count the number of such pairs where the two vertices
are dominated by k and by i the number of pairs where exactly one vertex is dominating. In
the second case we can change the roles of the two vertices of the pair and get 2i possible sets.
Let now W ⊆ V be a vertex subset of the graph, v ∈ W , u /∈ W and |W | = 2k + i. Then u
has 2k + i− 1 neighbors in W . All other vertices, which are not in W , have 2k + i neighbors
in W . Together with the ideas of the proof of the Theorem 7.22 the theorem follows.

It is also possible to calculate the bipartition polynomial of an (n, k)-star.

Theorem 7.24. Let G = (V,E) be an (n, k)-star. Then

B(Sn,k;x, y, z) =

k∑
i=0

(
k

i

)
xi

n−k∑
j=0

(
n− k
j

)
xj

(y(1 + z)i − y + 1)n−k−j(y(1 + z)i+j − y + 1)k−i.
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Proof. Let V2 be the vertices of the k-clique and V1 = V −V2. First of all, we choose i vertices
from V2 and j vertices from V1. Now we sum over all possibilities to choose vertices in V2

which are non-dominating. All of these vertices can be dominated by a vertex in V1. Now we
choose l vertices from V1 which are non-dominating. These vertices can be dominated by the
dominating vertices in V1 and V2. With these considerations we obtain

B(Sn,k;x, y, z) =

k∑
i=0

(
k

i

)
xi

n−k∑
j=0

(
n− k
j

)
xj

n−k−j∑
b=0

(
n− k − j

b

)
yb((1 + z)i − 1)b

k−i∑
l=0

(
k − i
l

)
yl((1 + z)i+j − 1)l.

Now the theorem follows by simpli�cation of the inner two sums using the binomial theorem.

Remark 7.25. The approach presented in Theorem 7.24 can be generalized in order to �nd
the bipartition polynomial of a split graph.

7.2.2 Substitution Graphs

Let H = (V (H), E(H)) be a simple graph and let G = (V (G), E(G)) be a graph with a
distinguished vertex u. The graph HG,u is obtained from H by gluing a copy of G at the
vertex u on each vertex v of H. For the following theorem and its proof, we use again the
polynomials Bu

i , i ∈ {1, 2, 3}, introduced in the proof of Theorem 7.4 (see Equations (7.2),
(7.3), and (7.4)).

Theorem 7.26. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs and u be a vertex
of G.

B(HG,u;x, y, z) = (B(G− u;x, y, z) + B
u
2(G))|V (H)|

B(H,
Bu

1(G)

B(G− u) + Bu
2(G)

,
yB(G− u) + Bu

2(G)

B(G− u) + Bu
2(G)

, z).

Proof. First we consider a term αijklt
ixjykzl of the expanded form of the following polynomial:

f(H) =
∑

W⊆V (H)

x|W |
∑

F⊆∂W
y|N(V,F )(W )|t|V |−|N(V,F )[W ]|z|F |.

The coe�cient αijkl counts set quadruples (T,W, S, F ) with |T | = i, |W | = j, |S| = k, |F | = l,
such that T,W, S are disjoint subsets of V (H) with T ∪ S ∪W = V (H) and F ⊆ E(H). The
set W is the set of dominating vertices and S comprises all dominated vertices that are non-
dominating. All edges of F link a vertex of W with a vertex of S. If a vertex u is in W ,
it is also a dominating vertex in the attached copy of the graph G. So we can substitute
x in f(H) by Bu

1(G). If a vertex u is in S, then it can either be dominated or not in the
corresponding copy of G. The term Bu

2(G) + yBu
3(G) yields exactly the polynomial for this

situation and we substitute y in f(H) with it. The rest of the vertices, counted by t, must
have the same state in the attached copy of G. So we substitute t with Bu

3(G). Observe that

Bu
3(G) = B(G − u;x, y, z). This argumentation leads to the following formula, which yields

the theorem.
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B(HG,u;x, y, z) =
∑

W⊆V (H)

B
u
1(G)|W |

∑
F⊆∂HW

(B
u
2(G) + yB

u
3(G))|N(V,F )(W )|

B
u
3(G)|V (H)|−|N(V,F )[W ]|z|F |

= (B
u
2(G) + B

u
3(G))|V (H)| ∑

W⊆V (H)

(
Bu

1(G)

Bu
3(G) + Bu

2(G)

)|W |
∑

F⊆∂HW

(
Bu

2(G) + yBu
3(G)

Bu
3(G) + Bu

2(G)

)|N(V,F )(W )|
z|F |.

Let Sn be a star with n vertices and let v ∈ V be the center vertex of Sn. Then we can
split the bipartition polynomial in three parts with respect to the vertex v:

S1
n = B

v
1(Sn) = x(1 + x+ yz)n−1,

S2
n = B

v
2(Sn) = y

(
(1 + x(1 + z))n−1 − (1 + x)n−1

)
,

S3
n = B

v
3(Sn) = (1 + x)n−1.

Moreover, let S2,3
n = S2

n + S3
n.

A hedgehog is a graph Hn with 2n vertices such that n vertices induce a clique in Hn and
each vertex of the clique is adjacent to exactly one vertex outside of the clique. Consequently,
the edge set of Hn can be partitioned into the edge set of a n-clique and the edge set of a
perfect matching of size n. A generalized hedgehog H(G) is a graph, obtained from a graph G
by attaching a pending edge to each vertex of G. A star-hedgehog Sk(G) is a graph obtained
from a graph G by attaching k pendent edges to each vertex of G (see Figure 7.2).

1

2
3

4
5

6

7

8

910

11

12

Fig. 7.2: Star-hedgehog with K3 as center

Corollary 7.27. Let G = (V,E) be a graph with n vertices and k ≥ 1. Then

B(Sk(G);x, y, z) =
(
y(xz + x+ 1)k − (y − 1)(x+ 1)k

)|V (G)|

B

(
G;

S1
k+1

S2,3
k+1

,
yS3

k+1 + S2
k+1

S2,3
k+1

, z

)
.
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7.3 Counting Bipartite Subgraphs

First, we introduce the graph polynomial B̃(G, z) which counts the number of bipartite sub-
graphs with respect to the number of the edges of these subgraphs. Let G = (V,E) be a
simple graph, then

B̃(G, z) =
∑
F⊆E

(V,F ) is bipartite

z|F |.

The bipartition polynomial can also be represented as a sum over the bipartite subgraphs
of a graph G.

Theorem 7.28. [Dod+15] The bipartition polynomial satis�es

B(G;x, y, z) =
∑
F⊆E

(V,F ) is bipartite

z|F |(1 + x)iso(V,F )
∏

(V1∪V2,A)∈Comp(V,F )

(x|V1|y|V2| + x|V2|y|V1|),

where V1 and V2 are the bipartition sets of a covered component of (V, F ) with the edge set A.

Thus the question arises: Is it possible to obtain the B̃-polynomial from the bipartition
polynomial? This question is still open, even for bipartite graphs.
It follows directly from the de�nition that the B̃-polynomial is multiplicative in the com-

ponents of a graph. Another interesting property of the B̃-polynomial is given by the next
lemma.

Lemma 7.29. Let G = (V,E) be a bipartite graph. Then∑
F⊆E

(−1)|F |B̃(G− F, z) = z|E|.

Proof. Using the de�nition of the polynomial yields the lemma:∑
F⊆E

(−1)|F |B̃(G− F, z) =
∑
F⊆E

(−1)|F |
∑

H⊆E−F
z|H|

=
∑
H⊆E

z|H|
∑

F⊆E−H
(−1)|F |

=z|E|.

We can use the last lemma to prove the next statement.

Theorem 7.30. Let G = (V,E) be a connected graph. Then∑
F⊆E

(−1)|F |B̃(G− F, z) =

{
z|E|, if G is bipartite

0, otherwise.

Proof. It remains to prove that the sum vanishes for non-bipartite graphs.∑
F⊆E

(−1)|F |B̃(G− F, z) =
∑
F⊆E

(−1)|F |
∑

H⊆E−F
(V,H) bipartite

z|H|

=
∑
H⊆E

(V,H) bipartite

z|H|
∑

F⊆E−H
(−1)|F |.
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The second sum is only not equal to zero if H equals E, but this is not possible because of
the fact that the graph G is non-bipartite. Therefore, the theorem follows.

Connection to the Edge-Cover Polynomial

In bipartite graphs the edge-cover polynomial (see De�nition 2.45) can be calculated from the
B̃-polynomials of the induced subgraphs.

Theorem 7.31. Let G = (V,E) be a bipartite graph and E(G, z) be the edge-cover polynomial
of G. Then

E(G, z) = (−1)|V |

∑
W⊆V

(−1)|W |B̃(G[W ], z)− 1

 .

Proof. Again, we simply use the de�nition of the B̃-polynomial and obtain∑
W⊆V

(−1)|W |B̃(G[W ], z) =
∑
W⊆V

(−1)|W |
∑

F⊆G[W ]

z|F |

=
∑
F⊆E

z|F |(−1)|
⋃
F |

∑
W⊆V \

⋃
F

(−1)|W | + 1

= (−1)|V |
∑
F⊆E

F is edge-cover

z|F | + 1.

The second sum in the second to last line equals zero if at least one vertex is not covered by
the chosen edges and therefore only edge-covers of the graph will be counted.

Theorem 7.32. Let G = (V,E) be a graph. Then∑
F⊆E

(−1)|F |E(G〈F 〉, z) = (−z)|E|.

Proof. Using the de�nition of the edge-cover polynomial yields:∑
F⊆E

(−1)|F |E(G〈F 〉, z) =
∑
F⊆E

(−1)|F |
∑
H⊆F

H is edge-cover in G〈F 〉

z|H|

=
∑
H⊆E

H is edge-cover

z|H|
∑
F⊇H

(−1)|F |

=
∑
H⊆E

H is edge-cover

z|H|(−1)|H|
∑

F⊆E\H

(−1)|F |

= (−z)|E|.

Theorem 7.33. Let G = (V,E) be a graph. Then∑
F⊆E

(−1)|F |E(G− F, z) = z|E|.
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Proof. Using the de�nition of the edge-cover polynomial yields:∑
F⊆E

(−1)|F |E(G− F, z) =
∑
F⊆E

(−1)|F |
∑

H⊆E\F
H is edge-cover

z|H|

=
∑
H⊆E

H is edge-cover

z|H|
∑

F⊆E\H

(−1)|F |

= z|E|.

Theorem 7.34. Let G = (V,E) be a graph. Then∑
W⊆V

(−1)|W |E(G[W ], z) =
∑
F⊆E

(−1)|
⋃
F |z|F |.

Proof. Again using the de�nition of the polynomial yields:∑
W⊆V

(−1)|W |E(G[W ], z) =
∑
W⊆V

(−1)|W |
∑

F⊆E(G[W ])
F is edge-cover in G[W ]

z|F |

=
∑
F⊆E

z|F |
∑
W⊆V

F is edge-cover in G[W ]

(−1)|W |

=
∑
F⊆E

(−1)|
⋃
F |z|F |.

Every edge subset of the graph has exactly one corresponding vertex subset in which this edge
subset is vertex-cover, namely the set which consists of the end vertices of the edges.

De�nition 7.35. Let G = (V,E) be a graph with random failing edges. The edges are assumed
to fail independently with identical probability q = 1 − p. Then the probability that the graph
has no isolated vertex is denoted by Piso(G, p).

Lemma 7.36. Let G = (V,E) be a graph with random failing edges. Then

Piso(G, p) = (1− p)|E|E(G, p/(1− p)).

Proof. A spanning subgraph G〈F 〉, with F ⊆ E, has no isolated vertex if and only if F is an
edge-cover in G. Therefore,

(1− p)|E|E(G, p/(1− p)) =
∑
F⊆E

F is edge-cover

p|F |(1− p)|E|−|F |

yields the probability that the graph has no isolated vertex.
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Theorem 7.37. [AO13] Let G = (V,E) be a graph with m edges and no isolated vertex.
Furthermore, let ei(G) be the number of edge-covers with i edges in G and

ẽi(G) =

(
m

i

)
−
∑
v∈V

(
m− d(v)

i

)
.

Then

ei(G) ≥ ẽi(G), ∀i ∈ {1, . . . ,m− 2δ + 1}
ei(G) = ẽi(G), ∀i ∈ {m− 2δ + 2,m}.

We can use this theorem to obtain a lower bound for Piso(G, p).

Corollary 7.38. Let G = (V,E) be a graph with m edges and no isolated vertex. Then for
all p ∈ [0, 1]

Piso(G, p) ≥
m∑
i=1

[ẽi(G) ≥ 0]ẽi(G)pi(1− p)m−i.
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8 Three Possible Generalizations of the

Domination Polynomial

The generalization of counting polynomials is a promising way for a better understanding of
these polynomials and it shows interesting connections to other polynomials. In this chapter
three generalizations will be presented. The aim of these de�nitions is to show some possible
directions for further research.

8.1 The General Domination Polynomial

De�nition 8.1. Let G = (V,E) be a graph. Then the general domination polynomial is
de�ned as

E(G;x, y, z, w) =
∑
W⊆V

x|W |y|N(W )|ziso(G[W ])wc(G[W ]).

The general domination polynomial has some connections to other graph polynomials.

Theorem 8.2. Let G = (V,E) be a graph, Q(G; v, x) be the subgraph component polynomial,

Y(G;x, y, z) be the trivariate domination polynomial and Dc(G, x) be the connected domination
polynomial of G. Then

Q(G; v, x) = E(G; v, 1, x, x),

Y(G;x, y, z) = E(G;x, y, z, 1),

Dc(G, x) = [ynz] E(G;xy, y, z, z).

Proof. Using the de�nition of the general domination polynomial yields

E(G; v, 1, x, x) =
∑
W⊆V

v|W |xiso(G[W ])xc(G[W ])

=
∑
W⊆V

v|W |xk(G[W ]) = Q(G; v, x)

E(G;x, y, z, 1) =
∑
W⊆V

x|W |y|N(W )|ziso(G[W ])

= Y(G;x, y, z).

The coe�cient of xiyjzk of the polynomial

E(G;xy, y, z, z) =
∑
W⊆V

x|W |y|N [W ]|zk(G[W ])

counts the number of sets W of size i that dominate j − i other vertices and the subgraphs
G[W ] having k components. The coe�cient of ynz yields the generating function of the
connected dominating sets of the graph.
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Corollary 8.3. Let G = (V,E) be a forest with n vertices. Then

χ(G, x) = [vn] E(G; v(x− 1), 1, x/(x− 1), x/(x− 1)).

Proof. This corollary follows immediately from the connection of the general domination poly-
nomial and the subgraph component polynomial. Trinks [Tri12b] showed that the subgraph
component polynomial and the subgraph counting polynomial are equivalent if the graph is
a forest. This yields the connection to the chromatic polynomial.

Theorem 8.4. Let G = (V,E) be a graph which vertices fail independently of each other with
the probability q = 1 − p. Furthermore, let R1(G, p) and Rk(G, p) be the residual network
reliability and the k-residual network reliability, respectively. Then

R1(G, p) =(1− p)n[z] E(G; p/(1− p), 1, z, z) and

Rk(G, p) =(1− p)n
n∑
i=k

[xiz] E(G;xp/(1− p), 1, z, z).

Proof. Substitution of the variables in the de�nition of the general domination polynomial
yields

(1− p)n E(G; p/(1− p), 1, z, z) =(1− p)n
∑
W⊆V

(p/(1− p))|W |ziso(G[W ])+c(G[W ])

=
∑
W⊆V

p|W |(1− p)n−|W |zk(G[W ]).

The coe�cient of z1 yields the desired polynomial. The proof of the second equation is
analogous.

As a result of the connection of E(G;x, y, z, w) to the trivariate domination polynomial
all results from Section 5.5.1 are valid for the general domination polynomial. The already
known results can be found in the following list:

• The order of the graph: |V (G)| = degv E(G; v, 1, x, x) [TAM11].

• The size of the graph: |E(G)| = [v2x] E(G; v, 1, x, x) [TAM11].

• The number of the components: k(G) = degx(v|V (G)| E(G; v, 1, x, x)) [TAM11].

• The size of the components (see Theorem 5.41).

• The independence number: α(G) = degx E(G; v, 1, x, x) [TAM11].

• The number of isolated vertices (see Theorem 5.41).

• The degree generating function (see Theorem 5.41).

• The number of induced C4 and P4 if the graph is a k-regular bipartite graph [LH13].

For some special graph classes, it is possible to prove explicit equations with respect to the
number of vertices of the graph. Every vertex subset of size k in the edgeless graph En yields
the term xkzk and therefore

E(En;x, y, z, w) = (1 + xz)n.
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In the complete graph every vertex subset of size greater or equal two has exactly one
covered component and the remaining vertices are in the neighborhood of this vertex subset.
If the vertex subset is of size one, then it is an isolated vertex and again all other n−1 vertices
are in the neighborhood. This yields

E(Kn;x, y, z, w) = ynw((1 + x/y)n − nx/y − 1) + nxyn−1z + 1.

Let now G = (V1 ∪ V2, E) be a complete bipartite graph, |V1| = m and |V2| = n. If at least
one vertex of V2 and no vertex of V1 is chosen, then all vertices of V1 are dominated. This
yields the term ym((1 + xz)n − 1). The same argumentation holds if at least one vertex of
V1 and no vertex of V2 is chosen. If from both of the two sets at least one vertex is chosen,
then this vertex subset is connected and all vertices that are not in this subset are dominated.
Hence, we obtain

E(Km,n;x, y, z, w) =yn
(

(1 + xz)m − 1) + wym((1 + x/y)m − 1)((1 + x/y)n − 1)
)

+ ym((1 + xz)n − 1) + 1.

Distinguishing Non-Isomorphic Graphs

The two non-isomorphic graphs in Figure (5.6) have the same general domination polynomial
and moreover, they are the smallest pair of non-isomorphic graphs with the same general domi-
nation polynomial. The pair is also an example for two non-isomorphic graphs with di�erent
Tutte polynomials but equal subgraph component polynomials. Liao and Hou [LH13] showed
that the subgraph component polynomial cannot distinguish between some non-isomorphic
graphs that can be distinguished by the characteristic polynomial, the matching polynomial
and the Tutte polynomial (see Figure 8.1). Nevertheless, these special graphs G1 and G2 are
distinguishable by the general domination polynomial.

Fig. 8.1: The graphs F6 and F−5 .

Let Fn be the fan graph and F+
n arises from Fn by adding a new vertex v and edges between

v and a degree-two vertex and its adjacent degree-three vertex of the fan (Figure 8.2).

Fig. 8.2: The graphs F6 and F+
6 .
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Theorem 8.5. [LH13] Let T(G, x) be the Tutte polynomial of the graph G. Then for n ≥ 5

T(Fn, x) = T(F+
n−1, x) and

Q(Fn; v, x) 6= Q(F+
n−1; v, x).

The last theorem together with Theorem 8.2 yields (for n ≥ 5)

E(Fn;x, y, z, w) 6= E(F+
n−1;x, y, z, w).

8.2 The General Bipartition Polynomial and the Most General

Domination Polynomial

In this section we introduce two possible generalizations, one of the general domination poly-
nomial and one of the bipartition polynomial. The �rst generalization yields a connection
between the bipartition polynomial and the trivariate domination polynomial. We call it the
general bipartition polynomial Ē.

De�nition 8.6. Let G = (V,E) be a graph. Then the general bipartition polynomial is
de�ned by

Ē(G;w, x, y, z) =
∑
W⊆V

x|W |wiso(G[W ])
∑
F⊆δW

y|N(V,F )(W )|z|F |.

The connection of the general bipartition polynomial to the bipartition polynomial and the
trivariate domination polynomial follows immediately from the de�nition:

B(G;x, y, z) = Ē(G; 1, x, y, z),

Y(G;x, y, z) = Ē(G; z, x, 1− y,−1).

The most general domination polynomial generalizes all domination-related graph polyno-
mials investigated in this thesis.

De�nition 8.7. Let G = (V,E) be a graph. Then the most general domination polynomial
is de�ned by

Ẽ(G; v, w, x, y, z) =
∑
W⊆V

x|W |vc(G[W ])wiso(G[W ])
∑
F⊆δW

y|N(V,F )(W )|z|F |.

One can easily see the connection to the general bipartition polynomial and the general
domination polynomial. One possible direction of further research is to investigate the con-
nections of the general bipartition polynomial and the most general domination polynomial
to other known graph polynomials. It also remains to prove recurrence equations of these
polynomials.
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9 Conclusions and Open Problems

In this thesis several theorems for di�erent graph polynomials are proved. The main results
deal with the domination-related polynomials, especially proofs of recurrence equations, dif-
ferent representations and the calculation in special graph classes. We also de�ned some new
counting polynomials, like the connected domination polynomial. Furthermore, one main
result of the thesis is the de�nition of the trivariate domination polynomial and the proofs
of some properties of this polynomial. Moreover, several results about the calculation of
the graph polynomials in product graphs are proved. We also showed the connection of the
studied counting polynomials to the corresponding reliability polynomials.
The two generalizations expatiated in this thesis (the bipartition polynomial and the trivari-

ate domination polynomial) have many nice properties and connections to other graph poly-
nomials. Figure 9.1 shows the connection between di�erent graph polynomials. This �gure
is an extension of the �graph of graph polynomials� presented by M. Trinks [Tri12a]. In his
thesis one can �nd more information and properties of the polynomials in the �gure. The
arrows in this �gure illustrate the connection between the graph polynomials. In the case of
a dashed arrow, the connection exists only for some special graph classes.

Open Problems

In this thesis we proved some results for the di�erent polynomials, but there are a lot of open
questions. In the following a selection of these problems is given.
For the independent domination polynomial of the tensor product of two paths only the

combinations Pn×P2 and Pn×P3 are known (see Section 4.3.2). Is there a way to generalize
these results to Pn×Pm, m ≥ 4, or to prove the given results in an easier way? Concerning the
Cartesian product the question arises, whether is it possible to �nd a faster way to calculate
the (independent/total/connected) domination polynomial of the product G�H?
In fact, little is known about the domination related graph polynomials of strong products.

Can the known results for this product be extended to G� Pn or G� Cn?
The domination polynomial can be calculated with the essential sets of a graph (i-essential

sets for the independent domination polynomial and t-essential sets for the total domination
polynomial). This leads directly to the next question.

Problem 9.1. How many essential, t-essential and i-essential sets does a given graph have?
Is it possible to prove upper and lower bounds for these numbers?

In Section 5.5.1, some connections from the trivariate domination polynomial to other graph
polynomials and some encoded graph invariants are shown. But it seems that the trivariate
domination polynomial has some more connections, especially to other neighborhood related
polynomials.

Problem 9.2.

1. Are there (more) connections between the trivariate domination polynomial and non-
neighborhood related polynomials?
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2. Are there more graph invariants encoded in the trivariate domination polynomial?

In Section 5.5.4 some Y-unique graph classes are shown. This leads to the following problem.

Problem 9.3. Are there more graph classes which can be distinguished by the trivariate
domination polynomial?

Some interesting open questions remain for future research with respect to the bipartition
polynomial. One interesting question is, whether the bipartition polynomial has more con-
nections to non-domination-related graph polynomials. Especially, is there any connection to
coloring-related polynomials, like the chromatic polynomial or the Tutte polynomial?
The bipartition polynomial distinguishes non-isomorphic graphs quite well. However, it

seems to be di�cult to characterize non-isomorphic graphs that have the same bipartition
polynomial.

Problem 9.4. Which properties of two non-isomorphic graphs cannot be distinguished by the
bipartition polynomial?

It might be of interest for further research to study the domination problems in hypergraphs.
We assume that the de�nition of the bipartition polynomial and the trivariate domination
polynomial can be easily extended to hypergraphs. But especially for the independent or the
total domination polynomial careful considerations will be necessary.
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Notation

Symbol Description Def. Page

N(v) Open neighborhood of the vertex v 2 17
N [v] Closed neighborhood of the vertex v 2 17
N(W ) Open neighborhood of the vertex subset W ⊆ V 2 17
N t(W ) Total open neighborhood of the vertex subset W ⊆ V 2 17
N [W ] Closed neighborhood of the vertex subset W ⊆ V 2 17
PN(u, U) Set of the private neighbors of u with respect to the

vertex subset U
2 17

degG(v) Degree of the vertex v 2 17
δ(G) Minimum degree of G 2 17
∆(G) Maximum degree of G 2 17
] degi(G) Number of vertices with degree i of G 2 17
Ḡ The complement of G 2 17
L(G) The line graph of G 2 17
G〈F 〉 Spanning subgraph (F ⊆ E) 2.3 18
G[U ] Induced subgraph (U ⊆ V ) 2.4 18
E(U) Set of edges which are completely inside U (U ⊆ V ) 2.4 18
G[F ] Edge-induced subgraph (F ⊆ E) 2.6 18
k(G) Number of components of G 2.7 18
c(G) Number of covered components of G 2.7 18
iso(G) Number of isolated vertices of G 2.7 18
Comp(G) Set of covered components of G 2.7 18
λG The type of G 2.8 18
α(G) Independence number of G 2 18
ω(G) Clique number of G 2 18
(G1, G2, X) Splitting of G 2.10 19
G− v Deletion of the vertex v 2.1 19
G/v Neighborhood completion of the vertex v and deletion

of v
2.1 19

G� v Removal of all edges between vertices of N(v) 2.1 19
G} v Graph (G� v)− v 2.1 19
G ◦ v Removal of v and adding loops to all neighbors of v 2.1 19
G−X Removal of all vertices in X 2.1 19
G\xX Fusion of the vertex subset X (the new vertex is labeled

with x).
2.1 19

GB(X Fusion of the vertex subset X and adding a new vertex
which is adjacent to the fused one.

2.1 19

G+ {v, · } Adding a new adjacent vertex to v 2.1 19
G+ {X, · }u Adding a new vertex u and edges joining all vertices of

X with u.
2.1 19

G− e Deletion of the edge e 2.1 19
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Symbol Description Def. Page

G/e Contraction of the edge e 2.1 19
G†e Extraction of the edge e = {u, v} (G− u− v) 2.1 19
Kn Complete graph with n vertices 2.2 20
En Edgeless graph with n vertices 2.2 20
Kk
n Simple k-bounded complete graph. 2.14 20

Λ(Kk
n) Type of the simple k-bounded complete graph Kk

n 2.14 20
Km,n Complete bipartite graph 2.2 20
Kk
m,n k-bounded bipartite graph 2.15 20

Sn,k (n, k)-star 2.19 21

P
(k)
n Simple k-path with n vertices 2.24 22

C
(k)
n k-cycle with n vertices 2.25 22

G�H The Cartesian product of G and H 2.27 23
G×H The tensor product of G and H 2.29 24
G ·H The lexicographic product of G and H 2.31 25
G�H The strong product of G and H 2.33 25
G ∪H The union of G and H 2.3 26
G ∗H The join of G and H 2.35 26
Fn Fan with n vertices 2.36 26
Wn Wheel with n vertices 2.36 26
Sn Star with n vertices 2.36 26
G ◦H Corona graph of G and H 2.37 26
χ(G, x) Chromatic polynomial of G 2.40 27
D(G, x) Domination polynomial of G 2.41 27
Ψ(G, x) Vertex-cover polynomial of G 2.42 27
I(G, x) Independence polynomial of G 2.43 28
E(G, z) Edge-cover polynomial of G 2.45 28
Q(G; v, x) Subgraph component polynomial of G 2.46 28

R(G;x, y) Rank polynomial of G 2.47 28
T(G;x, y) Tutte polynomial of G 2.48 28
R1(G, p) Residual network reliability of G 2.50 28
Rk(G, p) k-residual network reliability of G 2.50 28
γ(G) Domination number of G 3 31
N(G, x) The neighborhood polynomial 3.2 31
DRel(G, p) Domination reliability polynomial of G 3.3 41
EDRel(G,A, p) Edge failure domination reliability polynomial of G 3.32 42
γi(G) Independent dominating number of G 4 43
dik(G) Number of independent dominating sets of size k 4.1 43
Di(G, x) The independent domination polynomial of G 4.1 43
exp(G, r) R-expansion of G 4.6 44
Essi(G) Set of the i-essential sets of G 4.13 46
Cenn The centipede with 2n vertices. 4.4.1 61
DReli(G, p) Independent domination reliability polynomial of G 4.64 64
dt(G) Number of the total dominating sets of G 5 67
dtk(G) Number of total dominating sets of size k 5.2 67
Dt(G, x) The total domination polynomial of G 5.2 67
Con(G) Set of all vertex-induced conformal subgraphs 5 68
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Symbol Description Def. Page

Esst(G) Family of t-essential sets of G 5.10 70
DRelt(G, p) The total domination reliability polynomial of G 5.32 77

Y(G;x, y, z) The trivariate domination polynomial of G 5.36 78
γc(G) The connected domination number of G 6.2 91
l(G) The maximum leaf number 6.3 91
dck(G) Number of connected dominating sets of size k 6.5 91
Dc(G, x) The connected domination polynomial of G 6.5 91
DRelc(G, p) The connected domination reliability polynomial of G 6.56 104

B(G;x, y, z) The bipartition polynomial of G 7.1 107
µ(G, x) The matching polynomial of G 7.15 113
J(G;x, y) The extended cut polynomial of G. 7.1 114
Z(G;x, y) The Ising polynomial of G 7.1 115
Sk(G) Star-hedgehog obtained from G 7.2.2 118
Piso(G, p) Probability that the probabilistic graph G has no iso-

lated vertex
7.35 121

E(G;x, y, z, w) The general domination polynomial of G 8.1 123
Ē(G;w, x, y, z) The general bipartition polynomial of G 8.6 126

Ẽ(G; v, w, x, y, z)The most general domination polynomial of G 8.7 126
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