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1 Introduction

1.1 Basics of Approximating Functions

Let  be a mapping from R to C i.e.  : R → C { () ;  ∈ ;  ∈ R} be a set of
basic functions. We call it a ”family” of basis functions.  is a discrete or continuous

set of indices.

We look for a representation of  by the functions :

() =
X
∈

() (11) 

() =

Z


() (12)

{ ()} includes so many basis functions that the representations (1.1) and (1.2) are
unique.

Analysis with respect to the family { ()} :


{}→ ()   ∈ 

Synthesis (inverse operation):

()
∈→ 

Example 1.1 { ()} = {(− );  ∈ R  = 0 1 2 3 } :
Assumption: Let f be arbitrarily often differentiabley  can be represented by a Taylor

Series.

 =
 ()()

!

() =

∞X
=0

(− )

Example 1.2 Let  be periodic with the period 2,  ∈ L2(− )
Then { ()} = {;  ∈ Z} is an orthonormal system (ONS) in L2(− ) and so

3



4 KAPITEL 1. INTRODUCTION

given

 = ( ) =
1

2

Z 

−
()−

() =

∞X
=−∞




we have the Fourier Series of the function () which converges to () with respect to

the L2−metric.

Example 1.3 Let  ∈ L2(R) But the family { ()} = {;  ∈ R} is not an

ONS in L2(R)!! However we can develop

b() =
1√
2

Z ∞

−∞
()−

() =
1√
2

Z ∞

−∞
b()−

b() is called the Fourier Transform of (), which corresponds to the complex ampli-

tude for the frequency  of the signal ().

1.2 Problems in the Analysis and Synthesis of Func-

tions

1. During an experiment we get vectors of measured data only, not continuous data.

=⇒ We need a complete discretisation in practice

* for the basic functions and

* for the space of variable 

=⇒ the values of all functions are considered at discrete points

 =    0;  ∈ Z.
2. The goal of approximation by basis functions is to find a representation which is

* uniform and

* compressed as much as possible.

Application example: image compression.



1.2. PROBLEMS IN THE ANALYSIS AND SYNTHESIS OF FUNCTIONS 5

Example 1.4 Synthesis of the following function

f(t)

t

by Fourier Transform and by Wavelet Transform [3] :

f(t)

t
Reconstruction by the 100 biggest

Fourier coefficients (by modulus)

f(t)

t Reconstruction by the 75 biggest

Wavelet coefficients (by modulus)

=⇒ Limitations of Fourier Transform Theory:

*The values of () over the whole domain of  must be reconstructed.

* There is no localisation of extrema or jump discontinuities (saltus) on the −axis
possible.

Reasons:

On the one hand  = (2

) 0 ≤    is an exactly located value on the time axis,

but on the other hand there are Fourier coefficients  which include information from

the full axis. That’s why in our example we need a lot of coefficients for reconstructing

the extinction in one part of the domain and spikes in the other parts of the domain.
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We see one manifestation of this problem clearly near discontiuities and we also find

residual waviness across the full domain.

=⇒ bad compression rate because you can’t omit something

=⇒ bad quality of synthesis

=⇒ Selection of another family of basis functions with the following properties:

(F1) Representation (1.1) and (1.2) are suitable for a large class of functions.

The calculation for analysis and synthesis should be numerically stable and

fast.

(F2) The basis functions should be clearly located in time. In the best case they

have a bounded domain.

(F3) The transforms of the basis functions should be clearly located in the fre-

quency domain, too.

(F4) The basis functions should form an ONS.

Later we see, by application of the Heisenberg uncertainty principle, that (F2) is in-

consistent with (F3). That’s why we are looking for a compromize: if possible, local

information both about  and the transform of  should be readily identifiable. (F4)

is required for uniqueness.

For avoiding the dilemma of the Heisenberg uncertainty principle there are two possi-

bilities: the windowed Fourier Transform and the Wavelet Transform.

1.3 Short-Time or Windowed Fourier Transform

• Choose a windowing function  : R → R≥0 such that it is ”concentrated with
mass one around  = 0”. In order to achieve this goal we use, for example,

functions with a compact domain or functions with a distinct maximum at  = 0.

• The window  will be shifted  units to the right:

() = (− );   0

in order to scan the full −axis.
• The best known example of such a windowing function is the Gaussian distribu-
tion, with expectancy = 0 and; variance = :

() = (0 ) =
1√
2

exp(− 2

22
)  = 

It leads us to the GABOR Transform (Nobel Prize in Physics 1970).
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• Then transforms calculated for example by the basis functions  are the follo-
wing:

( ) =
1√
2

Z ∞

−∞
()(− )−

 : R×R→ C

• The information about  is very redundant in .yThere exist several inversion

formulae (GABOR, CALDERON).

Interpretation: We choose () in the following way:

t

g(t)

-h h0

 1
2h

This means that the complex function ( ) determines which frequencies appear

in  inside of the time interval [− ; + ] and what is their strength in the signal.

If  occurs in the analysed interval =⇒ |( )| is a nonzero number.

Advantage: better time localisation by sliding the window along the time axis

Disadvantage: constant width of the window, because

• you can’t locate high-frequency vibrations which occur only in a part of the
analysed interval.

• the window is too narrow for detecting a full period of a low-frequency vibration.

=⇒ We expect an improvement if the width of the window varies with 

=⇒ The analysing function system has to be changed.
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1.4 Wavelet Transform (WT)

• First we choose an analysing function (), the so called ”mother-wavelet”. The

mother wavelet is the starting point for the family of derived basis functions, the

so called "wavelet functions".

• Wavelet functions are dilated (stretched) and/or shifted copies of the mother wa-
velets:

() =
1

||05
µ
− 



¶
 : R→ C

( ) ∈ R∗ ×R = (R\ {0})× R

•  : scale parameter,  : shift parameter

The factor 1
||05 normalizes the wavelet functions.

• For example let () be the following function :

• With ||  1 you will get a wide window for researching slow and low-frequency
processes.
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With ||  1 you will get a narrow window for researching fast and high-

frequency processes.

• The wavelet transform

( ) = ( ) =
1√


Z ∞

−∞
() () =

1√
||05

Z ∞

−∞
()

µ
− 



¶


delivers data sets {( ) | ( ) ∈ R∗ × R} wich have a high redundancy. 
is a specific constant parameter of the mother wavelet.

• ∃ inversion formula

 =
1√


Z
R∗×R

( )()


2


• For calculation we need a discretisation of the index set R∗ × R which conforms
to the formula above. In the literature you find the following useful definition

with a zoom step   1

 =    = 2  ∈ Z
 =  =     0  ∈ Z.

b

a

a1 = 2

a0 = 1
a-1 = 0.5

b 2b 5b  
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Thus the scale of discretisation adapts to the width of the dilated wavelet func-

tions.

=⇒ The corresponding wavelet functions are self-similar.

=⇒ Multi Scale Analysis

=⇒ Fast Wavelet Transform

=⇒ Further wavelets can be designed such that:

• they have a compact domain,
• they are orthonormal and
• they allow fast numerical algorithms.

The theory of wavelets was developed in the 19800s and 19900s.
Examples for well-known mother wavelets are :

• the HAAR-wavelet,
• the Mexikan hat wavelet
• the MEYER-wavelet
• the DAUBECHIES-wavelet
• the BATTLE-LEMARIE-wavelet.

In the picture you see the Mexikan Hat mother wavelet.

The goal of our course is to illuminate the mathematical background of the wavelet

transform as a foundation for easy application of the technique. Requirements are:

• basics of functional analysis,
• theory of the Fourier transform and

• properties of the HAAR mother wavelet as an easy illustration for the general
theory.



2 Basics of Fourier Analysis

2.1 Fourier Series

We consider the space

L2(R2) = { : R→ C  2 −  1
2

R 2
0
|()|2 ∞}

with the inner product ( ) = 1
2

2Z
0

()() and

the induced norm kk2 = 1
2

2Z
0

|()|2 

Attention: This is a set of equivalent classes of functions. Functions of one class may

be different on a set of measure zero!

With respect to the metric function ( ) = k − k this space is complete and is
therefore a Hilbert space.

We use the complete ONS:

 () =
1√
2
exp ()  = 0±1±2 

and get the (general) Fourier series

 () =

∞X
=−∞

() , with

 = ( ) = b()
The following theorems say something about the character of convergence of these

Fourier series.

Theorem 2.1 RIEMANN-LEBESGUE-Lemma: lim→±∞ || = 0

Theorem 2.2 PARSEVAL Formula:
∞P

=−∞
b()b() = ( ) ∀  ∈ L2(R2)

Especially we have:

∞X
=−∞

¯̄̄ b()¯̄̄2 = ∞X
=−∞

||2 =
∞X

=−∞
|( )|2 = kk2 

11
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Theorem 2.3 The (general) Fourier Series of a function  ∈ L2(R2) converges to
 (with respect to the L2−metric).

Theorem 2.4 CARLESON 1966

() =

X
=−


 →

→∞
 ∈ L2(R2)

Definition 2.1  () = sup


P
=1

|()− (−1)| is called variation
over all segmentations  : 0 ≤ 0  1     = 2 of the interval [0 2]

Theorem 2.5  ∈ R2   () ∞ =⇒ ()
→
→∞



Theorem 2.6  ∈ R2  ≥ 0  ()   ( ()) =  ∞
=⇒ || ≤ 

2||+1 ∀ 6= 0

This means that the smoother the function, the faster the convergence of the absolute

value of the coefficients  to zero as ||→∞

Theorem 2.7 If  = 

µ
1

||+1+
¶
 ||→∞ for certain   0

=⇒  () =
∞P

=−∞
 is at least −times continuously differentiable.

Theorem 2.8  ∈ L2(R) y

 () ∼
∞X

=−∞
(

2


) with

 =
1√


Z
0

 () exp

µ
−2




¶
 =

µ
 (

2


)

¶


and
∞X

=−∞
||2 = 1



Z
0

| ()|2 
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2.2 Fourier Transform

Let  be a function with  ∈ L1(R) i.e.
R∞
−∞ | ()|  = kk1 =  ∞

Definition 2.2 Fourier Transform (FT) of () :

b() = 1√
2

Z ∞

−∞
()−  ∈ R

Theorem 2.9  ∈ L1(R) =⇒ b() is continuous; lim||→∞ | b()| = 0
The Fourier Transform is necessary for analysing nonperiodic signals because for the

synthesis of a nonperiodic function we need all frequencies, not only the multiples of the

first harmonic. In the literature you can find the Fourier transform in different forms.

Especially the factors in front of the formulas are different, in a manner analogous to

the Fourier series.

Given  ∈ R. Then b() is the complex amplitude of the vibration  in  .

Example 2.1 The HAAR scaling function is the following function with parameter

 = 1:

() = φ() =

½
1 0 ≤  ≤ 

0 

cφ() =
1√
2

Z ∞

−∞
φ()

− =
1√
2

Z 

0

−

= − 1√
2

£
− − 1¤

=
1√
2

−2
£
2 − −2

¤
= −2

2√
2

2 − −2

2

= −2
√
2

2


sin(



2
)

=
√
2

−2(


2
)
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Example 2.2 GAUSSian distribution curve (bell-shaped curve):

() = 01() =
1√
2
exp(
−2
2
)

b() =
1√
2
exp(
−2
2
)

The FT of the GAUSSian distribution curve is again the GAUSSian distribution curve.

If  ∈ L2(R) then there must not exist the FT of  because the functions {} are not
a basis in L2(R):
If  ∈ L2(R) y b() 6= ( )
On the other hand if you consider X = L1∩L2 = L2 you can expand the FT to the
full space L2(R).

Theorem 2.10 PARSEVAL-PLANCHEREL Formula /1/

 ∈ L2(R) =⇒ The FT is an isometry, i.e. ( bb) = ()
especially

°°° b°°°2
L2
= kk2L2 

If your operator is an isometry then the invers operator is equal to the adjoint operator,

i.e.: ( )−1 = ( )∗ y

Theorem 2.11  ∈ L1(R) b ∈ L1(R) (irreducible conditions!) y

() = ( )−1 b() = 1√
2

Z ∞

−∞
b() almost everywhere

especially in regions of () where () is continuous. This means that the original

signal  is a linear combination of vibrations of all possible frequencies , which are

represented by the amplitude b()
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Properties of the FT

1) Translation () = (− )

\()() = − b() (1)

\()() = b( − ) (2)

2) Dilatation () = ( 

)

\()() = || 1


b() (3)

3) Convolution ( ∗ )() = R∞−∞ (− )()

\( ∗ )() = √2 · b()b()
4) Differentiation ()  0() ∈ L1(R)

b 0() =  b() (4)

d()() = 
³ b´0 () (5)

5) FT is linear.

6) If  is a real function: b() = b(−) (6)

Theorem 2.12  ∈ L1(R);
R∞
−∞ |||()| ∞ for  ≥ 1

=⇒ b() is at least −times countinuously differentiable and³ b´() () = (−)[()()
2.3 HEISENBERG Uncertainty Principle

From property (R3) of the Fourier transform we get:

\()() =
d
(




) = || b()
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That means:

Compression of the function  in the original domain corresponds to a stretching ofb in the transformed domain.This is accompanied by a corresponding reduction in
the absolut values of b (consider for example  = 05). So you can qualitativly see

that a time signal  and its Fourier transform can’t be well located in a little domain

of the −axis respectively the −axis at the same time. Now we are looking for a

quantification of this situation:

Theorem 2.13 Given  ∈ L2(R) y kk ·
°°°b°°° ≥ 1

2
kk2 

Theorem 2.14 Given  ∈ L2(R); 0 ∈ R; 0 ∈ R y

k(− 0)k ·
°°°( − 0)b°°° ≥ 1

2
kk2 

(Proofs see. [1], p. 45 - 46)

Interpretation:

For example given  ∈ L2(R) with

kk2 =

Z ∞

−∞
||2  = 1

!
=

Z ∞

−∞


Then  = |()|2 can be interpreted as a probability density for the function  with

the meaning „the signal is substantially different from zero”.

kk2 =
Z ∞

−∞
2 ||2  =

Z ∞

−∞
2 = 2

But this is the central moment of order two, i.e. a measure of the spread of the signal

on the -axis, of the „width of the signal”. The points of reference for the „width of

the signal” are  = 0 and  = 0, i.e. the expectancy. Therefore the inequalities from

the theorems above say :

„width of the signal” · „width of the spectrum” ≥ 1
2
kk2 = 1

2


Thus both "widths"can’t be similarly small.

(Connection to physics:

|()|2: probability density for the location of a particle,¯̄̄b()¯̄̄2: probability density for the momentum of a particle)
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2.4 Sampling Theorem (SHANNON)

Functions

analogue signal

: ;f  
Vector / Number Sequence

time-discrete signal

 ( ;nu u f n t  

Reconstruction

Sampling

sampling interval

sampling rate

:

:

t

t

 1

If () is T-periodic then  can be represented by a discrete Fourier series using the

sampled values  = {0  −1} with  = 4.

If  ∈ L2(R) then by sampling we get a number sequence of l2 :  = {}∈Z withP
∈Z ||2 ∞

Theorem 2.15 Sampling Theorem by SHANNON:

Let be 4 ≤ 
Ω
; b() = 0 for ||  Ω i.e. if  is Ω-bandwidth limited, and  ∈ L2(R)

or () = 
³

1
||1+

´
;   0 then:

() =

∞X
=−∞

(4)(Ω(− 4));  ∈ R

In German this series is called ”Kardinalreihe von ”. It tends uniformly to  . (Proof

see [1] p. 48-49)

Notation 2.1 All functions  which occur in the spectrum of  have a period  ≥ 2
Ω


If 4 ≤ 
Ω
then there are two samples in every period.

Notation 2.2 Ω = 
4
is called the NYQUIST frequency or the cut-off frequency for

the sampling interval 4

Notation 2.3 1
4
= Ω


is the number of samples per time unit. It is called the NYQUIST-

rate.

Example 2.3 [3] p. 254:

() = exp(−012)(2 sin + cos 3)
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This function is bandwith limited by Ω = 2 y 4 ≤ 
Ω
= 

2
= 1

2
, which you can

see in the following pucture:

Because of |()|  10−4 for ||  10 we choose −20 ≤  ≤ 20 for the reconstruc-

tion series in connection with 4 = 05 and get very small differences between the

reconstructed and the original function.

Notation 2.4 Given (4)−1 y Ω =  · (4)−1

When Ω  Ω0 (real limitation), the high-frequency part of the signal with Ω ≤  ≤ Ω0

is not ignored or filtered out. Instead it is undersampled and will appear at a lower

frequency in the spectrum.

=⇒ Aliasing by „Undersampling”

On the other hand if Ω  Ω0 (real limitation), then the so called „Oversampling”
improves the convergence by reconstruction.



3 HAAR Wavelet

3.1 HAAR Basis

In 1910 Haar described a complete ONS for the space L2(R) Today we write it down
as a set of dilated and shifted copies of a special function, the mother wavelet:

Definition 3.1 HAAR Wavelet

() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤   05

−1 05 ≤   1

0 

1

1

-1

0.5 x

y

t

Properties of the HAAR Wavelet:

• Its domain is bounded.

• It is discontinuous, and so not differentiable.

• R∞−∞ () = 0;
R∞
−∞ |()|2  = 1

19
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•

b() =
1√
2

µZ 05

0

−−
Z 1

05

−

¶
=

µ
1√
2

¶µ
− 1


¶³£
−

¤05
0
− £−¤1

05

´
=

√
2

¡
−2 − 1− − + −2

¢
=

√
2

−2
¡
2− 2 − −2

¢
=

√
2

−2
³
2− 2 cos(

2
)
´

=
√
2

−2 · 2
³
2 sin2(



4
)
´

=
√
2

−2 · 4

sin2(



4
)

=
√
2

−2 · (
4
) sin(



4
)¯̄̄b()¯̄̄ =

1√
2

4

|| sin
2(


4
)
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• y As ||→∞, |b()| tends to zero like 1
|| 

•
¯̄̄b()¯̄̄ is even.

• We find the maximum of |b()| at 0 = 46622 .[1] y b() is relatively well
located at 0

Definition 3.2 Wavelet functions (child wavelets) of the HAAR wavelet:

() = 2−

2

µ
− 2

2

¶

= 2−

2 ·

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ − 2

2
 1

2

−1 1
2
≤ − 2

2
 1

0 



t

( ) rk  1 2

rk2

r
 22

r


22

Calculation of the domain:

0 ≤ − 2  1
2
2 =⇒ 2 ≤   ( + 1

2
)2

1
2
2 ≤ − 2  2 =⇒ ( + 1

2
)2 ≤   ( + 1)2

Examples of wavelet functions:
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Properties of the wavelet functions:

• Their domain is bounded.
• The bigger  the longer the domain intervals, i.e. the corresponding wavelet func-
tions have longer wave lengths, they are long-wave.

•  is the shift parameter.

• k()k2 = 1 (proof: homework)

Theorem 3.1 The functions () are an ONS in L2(R)
Proof:

1a) k()k2 = 1 (see above, properties of ())

1b) We want to show: ( ) = 0 for ( =  ∧  = ) i.e.  6=  ∨  6= 

Case 1: Consider  and  with  6=  :

supp ∩ supp  = [2
; ( + 1)2) ∩ [2; ( + 1)2) = ∅

=⇒ ( ) = 0 for  6= 

Case 2: Consider  and ; Let be   

supp  = [2
 ; ( + 1)2); supp  = [2

; ( + 1)2)

Multiples of different powers of 2, which differ only by ”1” in the exponent

are lying in the ”first half of the domain corresponding to the next higher

power of 2”:

y

yrk

y sl

   k2r

= 2k2r-1

(k+1)2r  (k+0.5)2r

= (2k+1)2r-1
t

 sl

rk

=⇒ ( ) = 0 for  6=  ∀ 
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2) We construct a basis by induction

•  ∈ L2(R);  ∈ 

• We consider the step approximation − of  by intervals of the width 2−.

• Over the interval − = [2−; ( + 1)2−) − is a constant function with
the value

− = 2


Z (+1)2−

2−
() =−

But this is the mean value of  at −

• If  is big enough then − appoximates  with any accuracy. (proof see Ana-
lysis, 1 st semester)

• We have to show that we can approximate  by a finite linear combination of 

with respect to the L2−metric with any accuracy.
• Because of the approximation of functions of L2(R) by step functions it is suf-
ficient to consider a function  of the following kind (instead of an arbitrary

function  ∈ L2(R)) :
∃ | () ≡ 0  || ≥ 2

∧ () is a step function, constant on −

• Idea behind the proof:
a) We construct a sequence of wavelet polynomials by induction

{}≥− with  =

X
=−+1

ÃX




!

b) We start with the smallest details i.e. with the most short-wave details of length

2−+1

c) Double the length of the domain. Look for details of this length until the length

of the domain is bigger than 2 and the remainder  → 0 as  →∞

• Ansatz:
 =  + 

 = 

=  = 2
−
Z


() = (311)

over the interval  = [2; ( + 1)2)
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Base clause:

 = − : − = 0; − = 

Induction hypothesis:

 =  +  for the index 

Induction step:

0 =  + 1

We calculate:

0 =
1
2
(2 − 2+1)

0 =
1
2
(2 + 2+1)

0 = 2
020 x

f

dr'k

 2k2r

= k2r'

(2k+1)2r  (2k+2)2r

= (k+1)2r'

fr,2k

fr,2k+1

fr',k

Ir,2k Ir,2k+1 Ir',k

r',k

t

0 is a half of the step height and 0 is the new mean value over the doubled

interval.

0 =

⎧⎨⎩ 2  ∈ 2
2+1  ∈ 2+1
0 

⎫⎬⎭ = 0 + 2
+ 0

2 0 · 0 

0 = 2−
0
2

⎧⎨⎩ +1  ∈ 2
−1  ∈ 2+1
0 

⎫⎬⎭
Corresponding to the induction hypothesis we get:

 =  + 

=  +
X


(00 + 0)

= 0 + 0

• After + steps we get :

 = −++ +  =

X
=−+1

ÃX




!
+ 
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 is a constant function over the intervals  = [2; ( + 1)2) with the

length 2

0 m p2m p2 m2 m2 t

f(t)

Then, at most,  and  are not equal zero:

 = −1 =−1 6= 0 over −1 = [−2; 0)
 = 0 =0 6= 0 over 0 = [0; 2

)

Continue with the method. After  steps the remainder will be:

 =

+X
=+1

ÃX




!
+ +

with + =  over [−2+; 0) and over [0; 2+) Otherwise + = 0

Because of the calculation we get the mean values: +−1 = 2− and

+0 = 2
− y

k+k2 =

Z ∞

−∞
|+()|2 

= 2+
¡
(2−)2 + (2−)2

¢
k+k =

°° − +

°°
=

p
2−(2 +2)

=  · 2−
2

→∞−→ 0

¥

3.2 Fast HAAR Transform

Every function  ∈ L2(R) can be represented by the ONS of HAAR wavelet functions
as:

 '
1X

=0+1

X
∈
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with the coefficients

 = ( ) =

Z (+1)2

2


= 2−

2

"Z (+05)2

2
()−

Z (+1)2

(+05)2
()

#


Example 3.1 () = −03
2

(4 sin(2) + 2 cos(3));  = [−4; 4] (see [3])
In the formula above we choose −2 ≤  ≤ 6 and  such that  6= 0 in the domain  

Thus 70 coefficients  must be calculated by numerical integration! This procedure is

too expensive for the moderate-quality result.

step approxi-

mation −2

approximation of

f by linear combination

of wavelet functions

But the proof of Theorem 4.3.1 gives us a faster algorithm:

• The interesting point is the following formula:
+1 =

1
2
(2 + 2+1)

+1 = 2
+1
2
1
2
(2 − 2+1)

⎫⎬⎭ (321)
• Together with the initial values

0 ≈ (( + 05)20)

and formula (3.2.1) we get a
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• recurrence scheme for calculating the values  without integration. If  is
sufficiently smooth and 0 small enough the initial values 0 can be interpreted

as values of a step function in the interval 0 = [2
0; ( + 1)20).

• Complexity:  = 2 · 2 · 2 initial values, the algorithm stops after +  steps,

During the first step there are 
2
pairs of intervals, and per pair we do 2 additions.

During the following step the number of pairs will be halved.

y  = 2 · 
2
(1 + 1

2
+ 1

4
+ ) = 2 additions

• Therefore the algorithm (3.2.1.) is extremly fast. But the unbalance in the factors
in front of the formulas is bad for the synthesis of the function.

Thus we are looking for an improvement by a scaling function. The HAAR Scaling

function

φ() =

½
1 0 ≤   1

0 



t

1

1

leads us to another family of functions:

() = 2
− 
2(2−− )   ∈ Z

with the domain:

0 ≤ 2−−   1 =⇒ 2 ≤   ( + 1)2

k()k2 =
Z ∞

−∞
|()|2  =

Z (+1)2

2

¡
2−


2

¢2
 = 2− · 2 = 1

Let  be given. Then the domains of  with  ∈ Z are disjunct and the functions 
are an ONB of L2(R)
y

 =
X


 

 = ( ) =

Z (+1)2

2
 · 2− 

2

= 2

2 · 2−

Z (+1)2

2
()

= 2

2 ·  ( (311))



28 KAPITEL 3. HAAR WAVELET

Replacement in formula (3.2.1) results in

+1 =
1

2
(2 + 2+1)

2−
+1
2 +1 =

1

2

¡
2−


22 + 2

− 
22+1

¢
+1 =

√
2

2
(2 + 2+1) (322)

and

+1 = 2
+1
2
1

2
(2 − 2+1)

= 2
+1
2
1

2
2−


2 (2 − 2+1)

=

√
2

2
(2 − 2+1) (322)

Now formulas (3.2.2) are symmetric. The algorithm is analogous to (3.2.1) with the

initial values

0 = 2
0
2 · 0 ≈ 2

0
2 · (( + 05)20)

and stops at  = .

Inverse transform/synthesis:

+1 + +1 =

√
2

2
2 · 2

+1 − +1 =

√
2

2
2+1 · 2

y
2 =

√
2
2
(+1 + +1)

2+1 =
√
2
2
(+1 − +1)

)
(323)

• Initial values for synthesis are  and  

• After calculation (3.2.3) we know the values 0 = 2−02 · 0 i.e. a step
approximation of 

• Complexity is the same as in analysis.
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Structure of the algorithm:

or
u 3or

u 2or
u 1or

u

or
c 3or

c 2or
c 1

Example 3.2

t

0 0u f

-4 4

3

-3

0 = 0

0 = 0 = ( 0 1 3−1−1 2 −1−3 1 0)
 = −4  0   3
(3.2.2) results:

t

 1 1

2
2

2
u f

-4

4

-2

1
 = 1

1 =
√
2
2
( 0−2 0 3 −4 0 )

1 =
√
2
2
( 0 4−2 1 −2 0 )
 = −2  0  1

(3.2.2) results further:

t

 2 22 4u f

-4

4

-1

2

 = 2

2 =
1
2
( 0 6 3  0 )

2 =
1
2
( 0 2−1  0 )
 = −1 0

(3.2.2) results further:

t

3

4

2
u

-4 4

1

h
3 =

√
2
4
( 0 3  0 )

ih
3 =

√
2
4
( 0 1  0 )

i
But there are not more  − functions!

Use the rest!
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0 = 1−21−2 + 1−11−1 + 1010 + 1111 +

+ 2−12−1 + 2020 +

+ 2−12−1 + 2020

= −
√
21−2 +

3
√
2

2
10 − 2

√
211 +

+ 32−1 +
3

2
20 +

+ 12−1 −
1

2
20

= wavelet polynomial by 1 and 2 + rest by 2



4 Continuous Wavelet Transform

4.1 Wavelets - Definition and Properties

Definition 4.1 Let  be a mapping from R to C with

1  ∈ L2(R); kk = 1 (411) 

2 0   = 2

Z
R∗=R\{0}

¯̄̄b()¯̄̄2
||  ∞ (412)

 is then called (mother) wavelet.

• (4.1.1) and (4.1.2) are minimal requirements.
• In practice all wavelets  belong to L1(R)

Theorem 4.1 () ∈ L2(R);  ∈ L1(R); y
(4.1.2) ⇐⇒ R∞

−∞ () = 0 ⇐⇒ b(0) = 0 (4.1.3).

Theorem 4.2 Given a k-times differentiable function ;  ≥ 1 with
() ∈ L2(R); () 6= 0; =⇒ After normalising () = ()() is a wavelet.

Theorem 4.3 If  ∈ L2(R); kk = 1; R∞
−∞ () = 0; and if the domain of

 is compact then  is a wavelet.

Theorem 4.4 If 0 6=  ∈ L2(R) ∩ L1(R);
R∞
−∞ () = 0; and if there exists a

number   05 | R
R |||()| =  ∞ then  is a wavelet.

Theorem 4.5 The collection of all wavelets Ψ = { : R→ C | (411) (412)} is
dense in L2(R)

(Proofs see. [2])

Example 4.1 HAAR Wavelet:

() =

⎧⎨⎩ 1 0 ≤   05

−1 05 ≤   1

0 

31
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 ∈ L2(R) because
R 1
0
1 = 1 ∞ thus requirement (4.1.1) is satisfied.

 ∈ L1 (R) because Z 05

0

−
Z 1

05

 = −1
4


Furthermore:  = 05 − 05(− 05) y

c = d05 − −2d05
=

−4√
22


³
4

´ £
1− −2

¤
=

−4√
2


³
4

´
−4

∙
4 − −4

2

¸
=

−2√
2


³
4

´
sin
³
4

´


=⇒ c (0) = 0 and so the requirements of theorem 4.1 are satisfied. Thus  is a

wavelet ( = 2 ln 2 see [2], p. 17).

Example 4.2 Modulated GAUSS Function:

Choose a fundamental frequency, for example  = 5

But () = −
22 is not a wavelet because b(0) 6= 0 y Thus we take the ansatz:

() = ( −)−
22

From the properties (R2) and example 2.2 of the Fourier transform we get:

b() = exp(−( − )2

2
)− exp(−

2

2
)

b(0) = exp(−
2

2
)−

!
= 0 y  = exp(−

2

2
)

After nomalising, the resulting function

() = (exp()− exp(−
2

2
)) exp(

−2
2
)

will be a wavelet.
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Example 4.3 Mexican Hat

() =
2√
3 4
√

(1− 2) exp(−

2

2
) = (1− 2) exp(−

2

2
)

() = −00()  () = exp(−
2

2
)

From property (R4) of the Fourier transform we get:

b() = −()2b() = e2 exp(−2
2
) yb(0) = 0

Therefore () is a wavelet.

4.2 Continuous Wavelet Transform

Definition 4.2 Given the wavelet , a function  ∈ L2 (R) and a number  6= 0. Then

( ) =
1√


1

||05
∞Z

−∞

()(
− 


) (421)

is called a wavelet transform of  with respect to 
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•  = R2− = {( ) |  ∈ R∗  ∈ R}
• For calculating a wavelet transform it is necessary to know what is the correspon-
ding wavelet.

•  6= 0 y  () =
1

||05
¡



¢


This function corresponds to a stretched (||  1) or a compressed (||  1)

function. The function is normalized becauseZ
R
| () |2 =

1

||
Z
R
|
µ




¶
|2 = 1

||
Z
R
| () |2|| = 1

• Shifting  by   0 to the right results:

 () =  (− ) =
1

||05
µ
− 



¶
with

°°

°° = 1
• y

( ) = ( ) ·
1√


|( )| ≤ 1√

kk ·

°°

°° =
1√

kk ∀ ( ) ∈ R2−

Example 4.4 HAAR Wavelet:   0

(
− 


) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 0 ≤ −


 05 y  ≤   + 

2

−1 05 ≤ −


 1 y + 
2
≤   + 

0 

y

( ) =
1√


1

||05
"Z +2



 () −
Z +

+2

 () 

#

=
1√


||05
2

"
2



Z +2



 () − 2


Z +

+2

 () 

#
Interpretation:

This is the difference of two mean values of the function  which are taken over two

adjacent intervals of the length 
2
centered at

¡
+ 

2

¢
multiplied by a normalising factor,

i.e. it is a „floating difference”. (see. digital filter in [3] p. 29)
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Example 4.5 Analysis of the function () by the Mexican hat

 () = 28831 () + 12052 () + 09683 ()

1 () = 2− 2|+ 2|  −3 ≤  ≤ −1
2 () = 1− cos(2)  0 ≤  ≤ 3
3 () =

1
2
(1− cos(5))  4 ≤  ≤ 6

 () = 0  = 1 2 3 

Representation of the wavelet transform by colors:
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•  : R2− → C1 : For the calculation of an inverse formula for the wavelet

transform we need an inner product of functions  : R2− → C1 and therefore we
need a measure on R2− = R

∗ × R, R∗ = R \ {0}.
• But the meaning of the variables  and  is mathematically different. That’s why
the LEBESGUE measure  =  is not applicable.

• ( ) ∈ R2− defines an affine stretching () :  +  =  such that || is the
parameter of stretching and  is the parameter of shifting only.

• Therefore we use the HAAR measure  = 1
2


• and the corresponding Hilbert space H = L2
¡
R2− 

¢
with the inner product

( )H =

Z
R2−

( )( )
1

2


This is a weighted Hilbert space (important for consideration when using group

theory).

• Our goal is to calculate the inverse operator of ( ). First we show that the

wavelet transform is an isometry and then we use −1 =∗

Theorem 4.6 The wavelet transform by the wavelet  : L2 (R)→ L2
¡
R2− 

¢
= H is

an isometry. [2]

Proof.  ∈ L2 (R) implies 
¡ · −



¢ ∈ L2 (R) =⇒  is an operater from L2 (R) to
L2 (R), i.e. | ( )| ∞.

k ( )k2H =

Z
R

Z
R∗
| ( )|2 1

2


=

Z
R

Z
R∗

¯̄̄d ( )
¯̄̄2 1
2
 (PARSEVAL-PLANCHEREL Formula, respect to )

Calculation of \ ( ) by  ( ) :

 ( ) =
1√


1

||05
∞Z

−∞

()(



− 


)

=
1p
||

∞Z
−∞

()(


− −


−)

=
1p
||

µ
 ∗ ( ·−)

¶


=
1p
||

¡
 ∗−

¢
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d ( ) =
1p
||

√
2

∙ b() ·\−¸ (rule of convolution)

=

√
2p
||

h b()|| 1
−
bi (R3)

=

√
2||p
||

" b()bÃ 
1
−

!#

=

p
2||√


h b()b (−)i (R6)

Thus:

k ( )k2H =
Z
R

Z
R∗

2||


¯̄̄b ()¯̄̄2 ¯̄̄ b ()¯̄̄2 1
2


We use the coordinate transformation  = ||;  = || split the integral in 2
summands, calculate the integrals, sum up and get:

k ( )k2H =

Z
R

Z
R∗

2||
||

¯̄̄b ()¯̄̄2 ¯̄̄ b ()¯̄̄2 ||2||2


||

=
1


·
Z
R∗
2
¯̄̄b ()¯̄̄2 || ·

Z
R

¯̄̄ b ()¯̄̄2 
=

1


·  · kk2L2

Now the inverse operator is the adjoint operator ∗ on the transformed domain (range)
([2], p. 52):

( ∗)L2 = ( )L2(R2− )

=

Z
R

Z
R∗
 ( ) ( )

1

2


=

Z
R

Z
R∗

1√


Z
R

1p
|| ()

µ
− 



¶
 ( )

1

2


=

Z
R
 ()

"
1√


Z
R

Z
R∗

1p
||

µ
− 



¶
( )

1

2


#


=

Z
R
 ()

£
 ∗

¤


y

 = ∗ () =
1√


Z
R

Z
R∗

1p
|| ( )

µ
− 



¶
1

2
 (422)
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• It is possible to distribute the factors in front of the integral in another way (see
Fourier transform). For example Blatter [1] works with the factor 1 in the wavelet

transform and with the factor  in the inverse transform. But then the wavelet

transform is not an isometry and we loose the possibility to invert  easily

• Exchanging the order of integration is a delicate operation because of the impro-
per integrals.

• Even it is possible to use different wavelets in analysing and synthesising. (see
[2], prewavelet transform)

4.3 Properties of the Continuous Wavelet Trans-

form

Now we describe the wavelet transform by the dilatation operator  and the transla-

tion operator  (see 2.2):

( ) =
1√


1

||05
Z
R
()

µ
− 



¶


=
1√


1

||05 (() )L2 

i.e. ( ) is an inner product of  by the function system { |  6= 0 ;  ∈ R}
which is complete if  satisfies the conditions (4.1.1) and (4.1.2).

4.3.1 Filter properties

Filters in signal processing are used to

• reduce data errors,

• separate high- and low- frequency parts of the signal and

• emphasize certain frequences.

The commonly used filters are filters by linear convolution in connection to the Fourier

transform.

 =  ∗  −→ b = √2 b · b
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Example 4.6 Kinds of filters are:

low pass filter: b ∼ [−;] : high frequencies are attenuated

band pass filter: b ∼ ≤≤ : spectrum between  and  is selected

high pass filter: b ∼ 1− [−;]: low frequencies are attenuated
([−;] is the characteristic function of the interval [−;].
Interpretation:

Let  be a function which consists of details bigger than  only. y

 =
X

 ()  ||  

|c ()| = 1√
2

¯̄̄̄
exp

µ
−+

2


¶
2


sin

µ
||
2

¶¯̄̄̄
  = [;]  =

+

2

=
||√
2

¯̄̄̄
2

|| sin
µ
||
2

¶¯̄̄̄
=

||√
2

¯̄̄̄


µ
||
2

¶¯̄̄̄
 || =  −  

Because of  (·)  0 in [−;]
||
2
≤  implies  ≤ 2|| 

I.e. the domain ofc () is the interval h−2|| ; 2||i essentially Therefore details of a size
|| ≥  correspond to a frequency  ≤ 2




On the other hand:
¯̄̄ b(0)¯̄̄  0 corresponds to details of size 2

0
in  .

Interpretation of the Wavelet Transform as a Filter:

We write ( ) by convolution (see proof of theorem 4.6):

( ) =
1√


1

||05 ( ∗−)

This corresponds to a filter by 
¡


−
¢
for given 

Theorem 4.1 says b (0) = 0  ∈ L1(R)∩L2(R) implies lim→∞
¯̄̄b ()¯̄̄ = 0 Therefore

the wavelet transform is a band pass filter. Because of the isometry (theorem 4.6) we

get:

Theorem 4.7

( ) =
||05√


Z
R

b () b()−
Proof: [2], p. 28
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Conclusions:

• If b () is concentrated at 0 (HAAR, Mexican hat), then b () is concentrated
at  = 0


.

• For given  the wavelet transform ( ) mostly includes information about

the signal  at frequency 0



• Therefore  is called the frequency parameter.
• For given  the wavelet transform( ) includes information about details of

size 20

in 

Example 4.7 In the synthesis of a function you must see a behavior with respect to

details like that written above. That’s why we give the inverse wavelet transform a

parameter  which controls the calculation of the improper integral:

 () =

Z
||

Z
R
 ( ))

1√
||05

µ
− 



¶
1

2
; lim

→0
() = 

We get the following picture from the Mexican hat y 0 =
√
2  = 1 ([2], p. 18,

fig. 1.4)

In the original function you find two objects of size  = 2 and  = 05 which have

„sharp edges”. These edges are details of a very short length:

g = 0

g = 1/2g = 1/4

g = 1/16 =  = 1/16 

 =  = 1/2

The wavelet transform includes information about details of size

 =
2
0


=
2√
2


→0−→ 0

Because of  = 2

= 2√

2
 we get

 =

√
2



→0−→∞
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Thus we get a sharp mapping of edges only as  → 0. What happens if you want to

map objects of size  = 2√
2
 ≥ 2√

2
 =
√
2 in ?

1 =
1
2

y 1 =
√
2 · 1

2
≈ 222

2 =
1
4

y 2 =
√
2 · 1

4
≈ 111

3 =
1
16

y 3 =
√
2 · 1

16
≈ 028

4.3.2 Phase Space Representation

In physics and in signal processing scientists are interested in the frequency distribution

of a function at the point 0 or over the interval [0 ]. That means they are looking

for a function  ( ) corresponding to () which indicates what is the contribution

of the frequency  at time  to the signal 

Definition 4.3 The set {( ) |   ∈ R} is called phase space.

Definition 4.4 The function  ( ) is called the phase space representation of  .

The phase space representation of  is not unique. For example the inner product

 (0 0) = (00 ) is such a phase space representation with a function  concen-

trated around 0 and b concentrated around 0.

A very precise localisation of  around 0 and b around 0 at the same time is not

possible because of the HEISENBERG uncertainty principle.

k(− 0)k · k( − 0)bk ≥ 1
2
kk2 ( 23)

Definition 4.5  ∈ L2 (R), kkL2 = 1; If

−∞  0 =

Z
R
 | ()|2  ∞ and if

−∞  0 =

Z
R
 |b ()|2  ∞

then  is located around the phase point (0 0) with uncertainty

 () = k(− 0)k2 · k( − 0)bk2 ≥ 1
4




42 KAPITEL 4. CONTINUOUS WAVELET TRANSFORM

Interpretation of the Wavelet transform as a Phase Space Representation:

Let  be a wavelet, i.e. kkL2 = 1 with
R
R  | ()|2  = 0 = 0. Usually || is an even

function with two distinct maxima and so we have to adapt the above concept :

+0 =

Z ∞

0


¯̄̄b ()¯̄̄2 

−0 =

Z 0

−∞

¯̄̄b ()¯̄̄2 

Then  is located around
¡
0 

±
0

¢
 Therefore  =

1√


¡
−


¢
is located around¡

0  

0

¢
with

0 =
1



Z
R


¯̄̄̄


µ
− 



¶¯̄̄̄2


=
1



Z
R
(+ ) | ()|2 

= 

Z
R
 | ()|2 + 

Z
R
| ()|2 

= 


0 =

Z
0≤±∞


¯̄̄b

¯̄̄2


=

Z
0≤±∞


1

||
¯̄
−

¯̄2 ||2 ¯̄̄b ()¯̄̄2 
=

Z
0≤±∞


¯̄̄b ()¯̄̄2 

=

Z
0≤±∞


¯̄̄b ()¯̄̄2 1




=
±0



y With ( ) ∈ R2;  6= 0 the point ¡0  
0

¢
passes through the phase space.

y

( ) = 

µ

±0


¶
Given .y

( ·) = 

µ
· 

±
0



¶
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corresponds to the frequency change around
±0



Given . y

(· ) = 

µ

±0
·
¶

corresponds to the frequency distribution at 

4.3.3 Approximation Properties

We look for a system of classification for the set of all wavelets which are important

for signal processing:

=⇒ classification by high frequency behavior

=⇒ looking for properties of  as ||→ 0

Definition 4.6  is called a wavelet of order  ∈ N if

1. the mean value and the first  − 1 moments of  vanish:R
R 

 = 0, 0 ≤  ≤  − 1

2. the -th moment is finite and not equal to zero:
R
R 

 =  ∞ ;  6= 0

Theorem 4.8  ∈  ;  ∈ R ; Let  ∈ L2(R) be a wavelet of order  ;

 =
(−1)
 !

· ;  ∈ R

=⇒
°°°°(−)||+05

√
( )−  () ()

°°°°
+

→0−→ 0

This means that the high frequency behavior of two wavelet transforms with respect

to different wavelets of the same order differ only in the factor  = √
 !

. The order

of a wavelet defines the behavior of the wavelet transform in the case of ||  1

Analogous theorems are satisfied in case of wavelets with a compact domain.

Further: (proofs see [2])

Theorem 4.9 The order of wavelets with a compact domain is finite.

Theorem 4.10 ∃ wavelets  ∈ (R) | RR  = 0 ∀ ∈ N0 (example: MEYER-

wavelet).

In addition to this classification the order of a wavelet gives some information about

decaying of the wavelet transform as → 0
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Theorem 4.11 Let  ∈ L1(R) be a wavelet of order  ;
1.)

R
R 

 = 0 for  = 0 1   − 1; R
R 

 ∈ R;
2.)  ∈ L2(R); ∃ ∈ {1  } |  () ∈ L∞(R)

=⇒ |( )| ≤ k( )kL∞ = (||+05); → 0; for almost all  ∈ R

That means: in high frequencies the wavelet transform falls the faster the smoother

the transformed function and the smoother the transforming wavelet. The number of

vanishing moments of the wavelet limits the accessible decay rate. If all the moments

of a wavelet vanish then only the function  defines the decay rate.

=⇒ Choose wavelets with an order as high as possible.

There are many analogous theorems for this fact. An interesting example is the follo-

wing:

Definition 4.7 An isolated saltus  of the  derivative of  with

 ()(+ 0)−  ()(− 0) =  is called "-Knackpunkt"(crucial point of order ).

Theorem 4.12 Let  be a wavelet of order N with compact domain,  ∈ L2(R) has a
crucial point at ,   

Therefore: ( ) = ||+05( + (1)); → 0;  6= ()

Example 4.8 Wavelet transform of the characteristic function over the interval [−1; 1]
(by the HAAR wavelet, see [2]):

Conclusions:

• If  is a smooth function then ( ) tends to zero very quickly as ||→ 0

• At crucial points you can find a lot of high frequencies because there exists detail
of very small size.
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• Additionally at these points the decay rate is smaller compared with other points
=⇒ good detectability

• Therefore the data compression rate is very high: Only these values of ( )

will be saved which are bigger than a threshold (We are not interested in small

values of ( ) because they are not needed for synthesis.)
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5 Discrete Wavelet Transform

The understanding and correct interpretation of the continuous wavelet transform are

starting points of our consideration. In practice there are two problems:

1. efficient calculation of the wavelet transform

2. efficient reconstruction of signals, i.e. the efficient calculation of the inverse wa-

velet transform.

First have a look at the 2 problem: Find discrete subsets {( 

)} ⊂   which are

sufficient for the reconstruction of  . In this way we come to the theory of „frames”

and the „multi scale analysis”. These two things enable an efficient calculation both of

the wavelet and of the inverse wavelet transform. Thus the first problem is solved too.

In the derivation of the Wavelet Transform we need a higher redundance in describing

the elements of a Hilbert space than we have by an ONS. That’s why frames were

introduced, first by Richard Duffin and Albert Charles Schaeffer in 1952. Later in the

1980s frames were used in the theory of wavelets by Stephane Mallat, Ingrid Daubechies

and Yves Meyer.

A frame is a generalisation of an ONS at least in an inner product space X or in our
case in a separable Hilbert space. There a frame is a subset { ∈ X}∈ , such that the
frame condition is satified:

 kk ≤ kk ≤  kk ∀ ∈ X;  ∈ R; 0   ≤ 

with a special frame operator  . The constants  and  give some information about

the redundance of the frame. If  =  then the frame ist called tight and the frame

operator is an isometry. An ONS is a tight frame with  =  = 1. In the case

X = L2(R) the set { ∈ X}∈ is a family of functions

 = {()| ∈() ∈ L2(R)}

with () = ( ()) for () ∈ L2(R)  ∈ , such that

kk2 =
Z


|()|2 ()

and

1. () is −measurable ∀() ∈ L2(R)

47
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2.  k()k ≤ k()k ≤  k()k ∀() ∈ L2(R);  ∈ R; 0   ≤ 

In the theory of wavelets we choose  := R2− := {( ) |   ∈ R;  6= 0} with the
measure  =



2
.

With the mother wavelet  we generate the family

 := { |  =
1√


1

||05(
− 


);   ∈ R;  6= 0}

Then the frame operator corresponding to the family  is the wavelet transform, i.e.

( ) = ( ) =( ). The wavelet transform is an isometry and therefore we

obtain the following formula

k( )k2H = kk2L2
and theorem 5.5:  is a tight frame with bound 1 for every wavelet .

We also get the formula of the inverse wavelet transform

 =

Z
R2−

( )



2
∀ ∈ L2(R)

for the synthesis of  ∈ L2(R) analogous to chapter 4.

5.1 Wavelet Frames

We recall: A subset of a Hilbert space X is called a complete system if every element

 ∈ X can be approximated arbitrarily well by linear combinations of elements of

this system. Now we consider overcomplete systems, i.e. when removal of one or more

elements from the system results in a complete system. In other areas of research, for

example in signal processing and function approximation, overcompleteness can help

to achieve a more stable, more robust, or more compact decomposition than using a

basis. Now we want to use overcomplete frames for finding a homogeneous theory of

continuous and discrete wavelet transform using functional analysis. In German there

is no special word for „frame". In science a frame is a structural system that supports

other components of a scientific construction.

Definition 5.1 Frame:  := { |  ∈ X;  ∈ } such that there is not any  ∈ X,
 6= O with ( ) = 0 ∀

 is redundant, because the elements  must be neither linear independent nor ortho-

gonal.
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5.1.1 Geometrical Interpretation - Introduction

First we consider a Hilbert space X of finite dimensions,
X = ; 1   ∈ X;   

Let  be an operator which maps from X to Y = C such that:

() = ( ) for 1 ≤  ≤ 

Furthermore let {1 } be a basis of C =⇒  =
P

=1( )

U = ( ) = { |  ∈ X}; dimU ≤  =⇒ U ⊂ Y
Problems:

• Can we define an element  ∈ X uniquely by  =  ∈ Y?
• If the answer is yes then the question is: How to calculate  from ?

Y is a Hilbert space with ( ) =
P

=1 . We consider the adjoint operator 
∗ :

Y→ X, defined by

(  ∗)X = ( )Y ∀ ∈ X ∀ ∈ Y

Then:

(  ∗) = ( )

=     

= ( ) ∀ ∈ X

y
 ∗ =  1 ≤  ≤  (511)

 =  ∗ : X→ X is called Gram-Operator (6= Gram Matrix!)

 =  ∗ =  ∗
Ã

X
=1

( ) 

!
=

X
=1

( )
∗ =

X
=1

( )  (512)

Furthermore: ker = ker because

1.  = 0 =⇒  = 0

2. kk2 = ( ) = ( ∗ ) = ( ) =⇒  = 0 =⇒  = 0

This implies:  is bijective ⇐⇒  is regular.

Now we have a look at :
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•  = ∗ because () = (  ∗) = ( ) = ( ∗ ) = ( )

• y The eigenvalues of  are real numbers and ( ) = ( ) = kk2 ≥ 0

• y 0 ≤  := 1 ≤ 2 ≤  ≤  =: 

• y ∃ a basis {1 2  }, which diagonalizes . In this basis we get:

 =

⎛⎜⎝ 11
...



⎞⎟⎠ (513)

• y
kk2 = ( ) =

X
=1

||2
½ ≥  kk2
≤  kk2 

Theorem 5.1  = {1  } ⊂ X is a frame ⇐⇒ ∃  ≥   0 |

 kk2 ≤ kk2 ≤  kk2 ∀ ∈ X

  are called the bounds of the frame. If  = , the frame is called „tight” and

kk2 =  kk2  I this sense  is essentially an isometry.

Example 5.1 Let  = {1  } be an ONS of X. Then

kk2 =
X

=1

|( )|2 = kk2 ∀ ∈ X

Thus the ONS is a tight frame with the bound  = 1 This gives information about the

size of redundance:  = 1 means no redundance.

Example 5.2 X = C2;  ≥ 2;  =
1√
2

⎛⎝ exp(2

)

exp(−2

)

⎞⎠  = 0  − 1 Therefore

we define the frame operator  : X→ C for  ∈ X = C2  = 0   − 1 by

() = ( ) =
1√
2

µ
1 exp(−2


) + 2 exp(

2


)

¶
=

1√
2

¡
1

−
 + 2




¢
  = exp(

2


)
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Therefore  is the 
 root of unity. y

kk2 =
1

2

−1X
=0

¡
1

−
 + 2




¢ ¡
1


 + 2

−


¢
=

1

2

−1X
=0

¡|1|2 + |2|2 + 12
−2
 + 12

2


¢
=

1

2

−1X
=0

kk2 + 1
2
12

−1X
=0

¡
−2

¢
+
1

2
12

−1X
=0

¡
2
¢

=


2
kk2 + 1

2
12

(−2 )
 − 1

−2 − 1
+
1

2
12

(2)
 − 1

2 − 1
=



2
kk2 + 1

2
12

(
)
−2 − 1

−2 − 1
+
1

2
12

(
)
2 − 1

2 − 1
=



2
kk2 

Thus  is a tight frame with  = 
2
 i.e. with  = 2 we get  = 1. That means in C2

two vectors of such kind are a basis in X and U:

 = 2

= 2= Im(T)T

If   2 then the number 
2
gives information about the redundancy of the set 

Conclusion 5.1 If  is a frame, then  is regular and  bijectiv, i.e.  is in principle

invertible.

Thus the second problem left over: Calculation of  from  = .

Let  = {1  } be a frame,  the corresponding Gram operator. −1 : X → X
exists because  =  ∗ is regular.
Now we consider the mapping  = −1 ∗ : Y→ X

 = −1 ∗ = −1 = X
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Thus  is the left inverse of  If  is tight then we get, with kk2 =  kk2 

( ) = ( ∗ ) = ( ) = kk2 = ( )

= (−1 )

y

−1 =
1


X

 =
1


X

∗ =
1


 ∗

I.e. we get the left inverse without calculation! Furthermore  is the right inverse of  ,

too because

 =  = −1 ∗ =  ( ∗ )−1 ∗ = −1 ( ∗)−1  ∗ = Y

Therefore  is the inverse operator of  :

 =
1


 ∗

But we must have a look at the domains of  and  .

How can we invert the operator efficiently? What is the representation of ?

Theorem 5.2  =  is the orthogonal projection of Y to Im( ) = U (proof: [1], p.
84)

Interpretation:

 


Tx = u = Py = T(Sy)x = Sy

y

O

T

S = G-1T*

P

I.e. for every  ∈ Y the preimage  =  is the vector of X, whose image  is mostly
closed to !! Therefore if  ∈ U ⊂ Y then  =  is the vector of X with  = 

Definition 5.2 e = { e1  e | e = −1 ∈ ; 1 ≤  ≤ } is called a dual frame
corresponding to 
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Notation 5.1 If  is tight, then:

(e) = ( e) = (−1) = ( 1

) = (

1


) y

e =
1




Theorem 5.3 Let  be a frame with the bounds 0   ≤  e is the corresponding
dual frame. Then:

1.  =
P

=1

( )e ∀ ∈ X

2.  =
P

=1

 e ∀ ∈ Y

3. e is a frame with 1

≥ 1


 0

4.  is the dual frame to e i.e.  = P
=1

( e) ∀ ∈ X

5. Let  =
P

=1

 e be an arbitrary representation of  as a linear combination of e
=⇒

P
=1

||2 ≥
P

=1

|( )|2

Proof:

1.

 = −1
(512)
= −1

X
=1

( ) =

X
=1

( )
−1

=

X
=1

( )e
2.

 = −1 ∗
X

=1

 = −1
X

=1


∗

(511)
= −1

X
=1



=

X
=1


−1 =

X
=1

 e
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3. Let e be the frame operator to e;
 is self adjoint, because ∗ = ( ∗ )∗ =  ∗ = .

y −1 is self adjoint, because (−1)∗ = (∗)−1 = −1
Thus

(e) = ( e) = (−1) = (−1 ) = (−1)
y e = −1 (514))

y °°°e°°°2 =
°°−1°°2 = (−1 −1)

= ( ∗−1−1) = (−1)

We use an ONS {e1  e} which diagonalize  and −1. y

°°°e°°°2 = (−1) (513)=

X
=1

1


||2

½ ≥ 1

kk2

≤ 1

kk2

4. e = e ∗ e (514)
= (−1)∗−1 = (−1)∗ ∗−1 = −1

y ee = e−1 e = (−1)−1 e = (−1)−1−1 = 

5. (1  )
 =  ∈ Y With 2. we get  =P

=1  e =  ∈ X Furthermore
 =  = U is the orthogonal projection from Y to U = Im( ) y

X
=1

|( )|2 = kk2 = kUk2 ≤ kk2 =
X

=1

¯̄

¯̄2


If  = U =  ∈ U the inequality is an equation. ¥

Interpretation:

By using frames  and the corresponding dual frames e the element  ∈ X can be
represented efficiently as the preimage of . The „natural” representation 1. of the

above theorem corresponds to the minimal „energy” of the coefficients.

In the next section we expand this theory to infinitely dimensional spaces.
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5.1.2 Common Frames

Let X be a complex infinitely dimensional Hilbert space;  is a set of points

For integral calculus we need a measure  at X which allocate a volume to every

measurable subset  ⊂ .

Given the family  = { |  ∈  ∈ X}.

Definition 5.3 Frame operator  : X −→ C : () = ( );  ∈ X;  ∈ 

with kk2 = R

|()|2()

Thus we get the dataset {() |  ∈ } which saves information about  ∈ X by
a „sensor” .

Definition 5.4  is a frame, if

1.  is −mesasurable for every  ∈ X and if
2. there exists bounds A and B such that

 kk2 ≤ kk2 ≤  kk2 ∀ ∈ X

Therefore the frame operator is linear, bounded (i.e. continuous) and invertable. But

in the infinitely dimensional case an iterative algorithm is nessecary for calculating the

inverse operator. It converges faster when the quotient 

is nearly equal to one :

Theorem 5.4 Let  be a frame with  ≥   0;  ∈ X;
0 = 0

+1 =  +
2

+
( −);  ≥ 0

Then:

lim
→∞

+1 = −1

Proof.

+1 =
2

+
 +

µ
X − 2

+


¶


=
2

+
 + 

= e
Because  is a frame we get:

 kk2 ≤ kk2 = ( ) = ( ∗ ) = ( ) ≤  kk2
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y
X ≤  ≤ X (515)°°°°− +

2
X

°°°° ≤ ¯̄̄̄
kk−

°°°°+

2
X

°°°°¯̄̄̄
≤

¯̄̄̄
 − +

2

¯̄̄̄
=

 −

2

kk =
°°°° 2

+
−X

°°°° = 2

+

°°°°− +

2
X

°°°° ≤  −

 +
 1

Thus  is a contractive mapping y°°° e − e°°° =

°°°° 2

+
 + − 2

+
 −

°°°°
≤ kk k−k

Therefore e is a contractive mapping, too and by the Banach fixpoint theorem there

exists one and only one fixpoint:

 = lim
→∞



=
2

+
 +

µ
 − 2

+


¶


=  +
2

+
( −)

y
 =  y  = −1

Notation 5.2  =  implies by (5.1.5)

 = X y −1 =
1


X

i.e. an iterative algorithm is not necessary.

Application of the frame concept to the wavelet transform:

X := L2(R) : space of time signals (); dimX =∞
 := R2− := {( ) |   ∈ R;  6= 0} with the measure  = 

2

Y := L2(R2− ) = H
Choose a mother wavelet  and generate the family
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 := { |  =
1√


1

||05(
− 


);   ∈ R;  6= 0}

( ) = ( ) = ( ) i.e. the frame operator corresponding to the family 

is the wavelet transform. The wavelet transform is an isometry and therefore we obtain

the following formula and theorem

k( )k2H = kk2L2

Theorem 5.5  is a tight frame with bound 1 for every wavelet .

Thus −1 = X; e = 

Analogous to the considerations above we obtain

 =

Z
R2−

( )



2
∀ ∈ L2(R)

for the synthesis of  ∈ L2(R) by the values () = ( ). This formula is the formula
of the inverse wavelet transform.

5.2 Discrete Wavelet Transform

Problem: Is it necessary to know ( ) at every point ( ) ∈ R2− for synthesis of
?

We know from the Fourier transform theory that the sampling theorem from SHAN-

NON gives the information that complete reconstruction of a bandlimited signal  is

possible from a discrete dataset ( )  ∈ Z .
Now we are looking for an analogon to the wavelet transform. But we don’t discuss

generally, for which subsets of R2− the reconstruction is possible. We only consider the
set

 := {( ) |  ∈ Z;  = ;  = ;   1   0}

A common version is  = 2  is called the zoom factor,  is called the basic step.

We only show set  for   0:
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For the mother wavelet  we consider the family  corresponding to this set:

 = { |  ∈ Z} 

 =
1√


√




µ
− 



¶
=

1
√

√




µ
− 



¶
=

1√

−


2 
¡
−− 

¢

In the phase space −  the functions  are located around the point

µ
;

±0


¶
=
¡
;−±0

¢


With increasing frequency  the points lie closer with respect to the −coordinate
which implies the zoom property.

Now we are looking for properties of this family, i.e. conditions for    such

that  is a frame. To do this we need a measure on  analogous to the above. The

point ( ) represents the rectangle .  has the width  and the height
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√
 −  1√


 By the HAAR measure we obtain

() = 

Z 
√



√


1


2

= 

µ
−1


¶
√



√


= 
¡−−−05 + −+05

¢
= 

¡−−05 + +05
¢

=
√

( − 1) 

Notation 5.3 With respect to the „normal” measure  these rectangles are not of

equal size!

 ∼ Z2

Then the counting measure # can be assigned to  . This measure assigns the value

() =  to every point of  . y Then Y = L2(R2− ) is equivalent to
Y = l2(Z2)
If  is a frame, then the corresponding frame operator 

() = ( ) =( )

is connected to the wavelet  by the wavelet transform.

Definition 5.5 Given   1 ;  is called acceptable if

1.

∃   0;   0;  ∈ R |
¯̄̄b()¯̄̄ ≤ ½ || || ≤ 1


||1+2 ||  1

2.

∃ 0  0 |
∞X

=−∞

¯̄̄b()¯̄̄2 ≥ 0 1 ≤ || ≤ 

The constants   0 and  are called the parameters of 

For example Condition 1 is satisfied if 0 ∈ L1 and 0 is of bounded variation with
 = 1;  = 05

For example Condition 2 is satisfied if  is of finite order N.

Then there is b =  + ( + 1)

y b() 6= 0  0  ||   ([1])
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Theorem 5.6   1  is an acceptable wavelet with the parameters   0 and
. Then there exists constants 0 

0 and  0 such that: If   0 then  = {}
is a frame with constants

 =
2



¡
0 −  01+

¢
;  =

2



¡
0 −  01+

¢


Proof: [1]

Then it is possible to reconstruct  ∈ L2(R) with respect to this frame.
 ∼ Z2 ⊂ R2 i.e. values of the wavelet transform at these points of  are sufficient

for reconstruction! (But it is still a countable infinite set.)

Corresponding to theorem 5.3 the dual frame e is needed to compute  :
e = −1()

Because  is not tight in general the calculation of e is troublesome. The functionse are not dilated or translated copies of a single
e. That’s why it is better to look

for a tight frame. Then e =
1




Theorem 5.7 The Fourier transform b of the wavelet  has a compact domain (band-
limited signal!) in the interval  = [ 0] with 0    0 Given

∞X
=−∞

|b()|2 ≡ 0  0; 1 ≤  ≤ 

Then  = {} with the zoom factor  and the basic step  ≤ 2

0 − 
 is a tight

frame. (proof: [1])

Therefore the reconstruction of  by elements of the set () can be done without

problems because −1 = 1

 Furthermore

Theorem 5.8 A tight frame  = {} to the wavelet  with the bounds
 =  = 1 generates an ONS of L2(R) if kk2 = 1. (proof: [2])

These two theorems are used for generating wavelets with the required properties con-

cerning the connection to a frame, for example for generating the DAUBECHIES-

GROSSMANN-MEYER-Wavelet or theMEYER-Wavelets. The following example shows

this.
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Example 5.3 [1] Given an auxiliary function  = () : R → R;  ∈ C(R);  ≥ 0
with () =

½
0   ≤ 0
1   ≥ 1  for example

() =

⎧⎨⎩ 0  ≤ 0
103 − 154 + 65 0 ≤  ≤ 1
1  ≥ 1

Furthermore:

(1− ) =

⎧⎨⎩ 0  1−  ≤ 0 y  ≥ 1
1  1−  ≥ 1 y  ≤ 0

10(1− )3 − 15(1− )4 + 6(1− )5 = 1− 103 + 154 − 65  0 ≤  ≤ 1
= 1− () y () = 1− ()

 = 2 because  0 () = 302 − 603 + 304 and  00 () = 60 − 1802 + 1203 imply
 00 (0) = 0;  00(1) = 0
() is symmetric with respect to  = (05; 05) : (05− ) = 1− (05 + )

Given   1;   0. We generate  = [ 0] corresponding to the preconditions of the
theorem 5.7 by

 =
2

(2 − 1)  0 and 0 = 2    0
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Then we construct  by b with the domain  :

b () =
√
0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sin
³

2
( −

− )
´

  ≤  ≤ 

cos
³

2
( −

2− )
´

  ≤  ≤ 2 = 0

0 

0 is calculated later by normalising . Furthermore  = 2;  = 1
y  = 2

3
= 2

3
; 0 = 8

3
; 0 −  = 2

We have to show X
∈Z

¯̄̄b ¡¢¯̄̄2 = 0

If   0 then   0 y corresponding summands ≡ 0
If  ≥ 0 then ∃ ∗ ∈ Z |  ≤ 

∗
 ≤  ∧  ≤ 

∗+1 ≤ 2 I.e., the sum goes

from ∗ to ∗ + 1 only.

X
∈Z

¯̄̄b ¡¢¯̄̄2 = 0
µ
sin2

µ


2
(


∗
 − 

 − 
)

¶
+ cos2

µ


2
(


∗+1 − 

2 − 
)

¶¶

= 0
Ã
sin2

µ


2
(


∗
 − 

 − 
)

¶
+ cos2

Ã


2
(

¡


∗
 − 

¢
 ( − )

)

!!
= 0

The inverse Fourier transform generates  the DAUBECHIES-GROSSMANN-MEYER

wavelet with  = 2;  = 1
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furthermore [2]

0 =
1

ln
=

1

ln 2
;  ≥ 0


=



ln 2

Example 5.4 The MEYER wavelet with

b() = 1√
2



2 ( () +  (−))

and the defining function () for  = 2 and  = 1

() =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sin(


2
(
3

2
− 1)) 

2

3
≤  ≤ 4

3

cos(


2
(
3

4
− 1)) 

4

3
≤  ≤ 8

3

0 

generates a tight frame with the bound  = 1. Furthermore kk22 = 1Thus the frame
 = {} is an ONS of L2(R).
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Proof: Given  = [2
3
; 4

3
]  = [4

3
; 8

3
] Because of kk2L2 =

°°°b°°°2
L2
we obtain:

kk2L2 =
1

2

∙Z
||∈

sin2
µ


2
(
3

2
||− 1

¶
 +

Z
||∈

cos2
µ


2
(
3

4
||− 1)

¶


¸
=

1

2

∙
2 · 2

3

Z 1

0

sin2
³
2
()

´
+ 2 · 4

3

Z 1

0

cos2
³
2
()

´


¸
=

2

3

Z 1

0

³
1− cos2(

2
())

´
+

4

3

Z 1

0

cos2
³
2
()

´


=
2

3
+
2

3

Z 1

0

cos2
³
2
()

´


 is symmetric with respect to  = (05; 05) :

() = (05 + ) = 1− (1
2
− ) with  ∈ [05; 1] and  ∈ [0; 05],

cos(
2
− ) = sin() and a substitution  = 1

2
− . Therefore we getZ 1

0

cos2
³
2
()

´
 =

Z 05

0

cos2
³
2
()

´
+

Z 1

05

cos2
³
2
())

´


=

Z 05

0

cos2
³
2
()

´
+

Z 05

0

cos2
µ


2
(1− (

1

2
− ))

¶


=

Z 05

0

cos2
³
2
()

´
+

Z 05

0

sin2
µ


2
(
1

2
− )

¶
 =

1

2

In summery we obtain:

kk2L2 =
2

3
+
2

3

Z 1

0

cos2
³
2
()

´
 =

2

3
+
2

3
· 1
2
= 1 ¥

Example 5.5 The Mexican hat with

b() = 2√
3

4
√
2 exp(−

2

2
)

doesn’t have a compact domain.y The corresponding frame  =  is not tight. We

generate the family

 = {
 | 0 ≤  ≤  − 1;  ∈ Z}

with

() = 2−

(2−


 );  = 0   − 1

which gives a superposition of  grids in the phase space. This corresponds to „

voices per octave”. We get the following estimations of  depending on   = 2
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and a number 0 ([2] p. 100):

Now we know a possible partitioning for the  − −plane to do the inverse wavelet
transform and a possibility for construction of mother wavelets. But we don’t know

how to build a fast method for the inverse wavelet transform. The solution for this

problem is the Multiscale Analysis.

5.3 Multiscale Analysis - MSA or Multiresolution

Analysis MRA

MSA was founded by MEYER and MALLAT. It represents an independent way to ob-

tain the discrete wavelet transform. The goal is the construction of very fast algorithms

for the discrete wavelet transform, so that it has a chance in comparison with the FFT.

It is the design method of most of the practically relevant discrete wavelet transforms

(DWT). To this we need wavelets , for which the frame ( 2 1) is an ONS of L2(R):

 =
X


( 21)L2
21


MSA provides the ability to construct such wavelet basis.
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5.3.1 Introduction

Motivation:

Splitting the signal  ∈ V−1 ⊂ L2(R) in its

low-frequency and high-frequency component

↓ ↓
1 by the orthogonal projection P0 2 W0 ⊕ V0 =V−1
to V0 ⊂ V−1 which contains =⇒ W0 is the orthogonal complement to

the „smooth” functions of V−1. V0 with respect to V−1.
It contains the „rough” functions.

Let 0 be the projection of  to W0 y

V−1 = V0 ⊕ W0

 = 0 +0

In an analogous way we split 0 by projectors 1 1 such that:

1(0) = 1 ; 1(0) = 1

Therefore we get:

0 = 1 +1 b= V0 = V1 ⊕W1

 = 1 +1 +0
...

 = |{z}+ +−1 + +0| {z }
This corresponds to splitting the signal into a mixture of low frequencies () and

bands of high frequencies (). Thus the  contain  shares of certain details

size according to the overswept frequency band. 0 is the band with the highest

frequencies, i.e. it corresponds to the smallest details. This decomposition process is

called multi-scale analysis (MSA) and has a certain similarity to the decomposition

process in multigrid algorithms by numerically solving partial differential equations.

Example 5.6 Function splitting ([2], p. 104)
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The question is now: How to find the spaces V?

Definition 5.6 A multiresolution analysis (MSA) of the space L2(R) consists of a
sequence of closed nested subspaces V ⊂ L2(R) :

{0} ⊂  ⊂ V1 ⊂ V0 ⊂ V−1 ⊂  ⊂ L2(R)

such that:

) ∪
∈Z

V = L2(R)
completeness

and ∩
∈Z

V = {0}
separation axiom

) V+1 = 2(V) ∀ ∈ Z (self-similarity)

) ∃ ∈ L2 ∩ L1 | {(·− ) |  ∈ Z} is an ONS in V0
The generating function  is called the scaling function or the father wavelet.

Notation 5.4  ∈ V contains only details of the extent of ≥ 2 on the time axis. The
more "negative" , the finer the details which are included; in the limit, any  ∈ L2(R)
is reached ( b= low-pass filter).
Notation 5.5 b) implies

(·) ∈ V+1 ⇐⇒ (2·) ∈ V ⇐⇒ (2+1·) ∈ V0

MSA is distinguished by property b) and
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Notation 5.6 c) implies

V0 = { ∈ L2(R) | () =
X


(− );
X


||2 ∞}

Analogous to the wavelet functions  functions  () are formed:

 () = 2
− 
2(

− 2

2
) = 2−


2(



2
− ) (531)

Notation 5.7 Then b) implies that { |  ∈ Z} is an ONS of V.  and +1are

shifted by a step size 2 against each other. Thus the spaces V are scaled versions of

the basic space V0 which is spanned by translation of the scaling function .

Example 5.7 Choose

 =

½
1  0 ≤   1

0 

and choose V0 such that it is the space of all functions which are constant at the
intervals [;  + 1):

V0 = {0 |  ∈ Z} y

V = 2(V0);   6= 0

By this definition the inclusion of the spaces, the separation axiom and the completeness

axiom are satisfied (because of the completeness of step functions). Thus {V}∈Z is
a MSA. This choice of  leads to the HAAR wavelet.

Because of the proper subset relationship of the spaces V pairwise orthogonal sub-

spaces W ⊂ L2(R) are designed such that L2(R) can be completed:

V−1 = V ⊕W; W⊥V ∀ ∈ Z (532)

Furthermore:

W+1 = 2 (W)   ∈W ⇐⇒ 
¡
2·¢ ∈W0

Theorem 5.9 If {V}∈Z has the properties up to and including a) of a MSA, then
the subspaces W are pairwise orthogonal, and we obtain

L2(R) = ⊕
∈Z
W
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proof: [1], p. 108

Let  be the orthoprojector from L2(R) to V, then the image  of the signal

 ∈ L2(R) still contains all details ≥ 2 on the time axis. The following applies:

 =

∞X
=−∞

¡
 

¢


Thus  corresponds to a low-pass filter.

Let  be the orthoprojector from L2(R) to W Because of (5.3.2) we get

−1 =  +   = −1 − 

Therefore −1 contains all details ≥ 2−1 on the time axis. − removes the details

≥ 2 Thus  corresponds to a (band) filter, which extract details of the length

2−05 = 2 1√
2
.

Notation 5.8

2()

+ + +

1-1 0 2

210

{0}

{0}

P0 P1 P2

Q1 Q2Q0

Obviously:

V = ⊕
≥+1

W
→−∞−→ ⊕

∈Z
W = L2(R)

Therefore  ∈ L2(R) can be decomposed into

 =
X
∈Z

 =
X
≤

 +
X

≥+1
 =  +

∞X
≥+1



i.e. in a lowpass and a sum of band filters.

Outlook:

For every MSA there exists a wavelet  which translated and dilated versions

 () = 2
−

2 (2−− ) for fixed  ∈ Z are an ONS of W.

The mother wavelet can be constructed by the scaling function explicitly.

y  =
P∞
−∞( ) The collection of all  i.e. the family  is then an

ONS of L2(R)
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5.3.2 Scaling function

It is the most important part of the MSA, because corresponding to remark 5.6 from

5.3.1 we define first the space V0 by  and then the other spaces V by definition b).

 = 00 must be defined in such a way that the functions 0 = (·−) are orthonormal
(see definition c). If necessary it must be aided by the Schmidt orthonormalisation

process. In addition the definition of  must guarantee the inclusions of the spaces V

and the completeness axiom (properties a) and b) of the MSA).

Theorem 5.10 Choose  ∈ L2(R)  6= 0
V0 = { ∈ L2 |  () =

X


(− );
X


||2 ∞}; V+1 = 2V;  ∈ Z

If V0 ⊂ V−1 then {0} ⊂  ⊂ V1 ⊂ V0 ⊂ V−1 ⊂  ⊂ L2(R)
Theorem 5.11

V0 ⊂ V−1 ⇐⇒ ∃  ∈ l2(Z) |  () =
√
2

∞X
=−∞

(2−)   (533)

This representation of  () is called the Scaling equation.

Proof. I) =⇒
V0 = { ∈ L2(R) | () =

P
 (− )

P
 ||2 ∞}

 ∈ V−1 ⇐⇒ (2−1·) ∈ V0 y

−1 = 2
1
2

µ
− 2−1

2−1

¶
is an ONS in V−1

y
V−1 = { ∈ L2(R) | () =

X


−1;  ∈ l2(Z)}

y
() =

X



√
2(2− )     ∈ l2(Z)

II) ⇐=
Assume

(− ) =
√
2
X


e(2(− )− )

=
√
2
X


e(2− ( + 2))
y

0 = (− ) =
X


e−1+2 ∈ V−1
y V0 ⊂ V−1
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Notation 5.9 The scaling equation rules the MSA, because  defines the scaling func-

tion uniquely.

Notation 5.10 For the fast algorithm we need , not  and .

Notation 5.11 The scaling equation describes the self-similarity of  (analogous to

the theory of fractal sets) which results in restrictions on the selection of .

Properties of the coefficients  :

{0}∈Z is an ONS in V0 which implies:

1. 0 =
P

 2+ ∀ ∈ Z (534 consistency condition)

0 = (0 ) =

Z
(− )()

= 2
X




Z
(2− 2− )(2− )

=
X




Z
(e− 2− )(e− )e

=
X


2+ =
X


2+ ∀ ∈ Z

2.
P

 ||2 = 1

Theorem 5.12  ∈ l1(Z); R
R  ()  =  6= 0 =⇒ P∞

=−∞  =
√
2

Theorem 5.13 If the scaling function  is a function with compact support, then there

are only finitely many  6= 0

Theorem 5.14 Let  be a function with compact support,

 =  () = inf{ |  () 6= 0}  −∞
 =  () = sup{ |  () 6= 0}  +∞

then:   ∈ Z and there are at most these  with  ≤  ≤  not equal zero.

(proofs: [1])
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Example 5.8

 =  =

½
1  0 ≤   1

0 

= (2) + (2− 1)
=

1√
2
−10 +

1√
2
−11

= 0−10 + 1−11

H

t

1

1

( )H t 2 ( )H t 2 1

.0 5

 = 0 for all other  Moreover, the function  satisfies the scaling equation andP
 ||2 = 1

As in the fast algorithm only the coefficients  are significant, furthermore we use only

functions  with compact support.

Under which conditions on  in the MSA, are the completeness and the separation

axioms true?

Theorem 5.15 Choose  ∈ L2 (R) such that | () | ≤ 
1+2

;  ∈ R; and let {0}∈Z
be an ONS of V0 Then\



V = {0} ∧
[


V = L2 (R) ⇐⇒
¯̄̄̄Z



¯̄̄̄
= 1

(Proof: [1] p. 114-117)

When does the set { = (·− )}∈Z form an ONS of V0?

Theorem 5.16  ∈ L2 (R)  { = (·− )}∈Z forms an ONS
⇐⇒ Φ() =

P


|b( + 2)|2 = 1
2
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Proof. Given  ∈ L2 (R)

(0 ) = (b0 b) = Z
R

b()exp(−)b()
=

Z
R

¯̄̄b()¯̄̄2 exp()
=

X


Z 2

0

¯̄̄b( + 2)¯̄̄2 exp()
=

Z 2

0

X


¯̄̄b( + 2)¯̄̄2 exp() ( )

=

Z 2

0

Φ() exp()

= 2bΦ(−) !
= 0 (Φ  2 − )

⇐⇒ bΦ(−) = 1

2
0 y Φ() =

1

2
 

5.3.3 Construction of the Scaling Function and the Mother

Wavelet

We transfer the construction into the codomain of the Fourier transform because there

the calculation is easier. First we apply the Fourier transform to the scaling equation:

 () =
√
2

∞X
=−∞

(2− ) =
√
2

∞X
−∞

(2(− 

2
)) y

b () =
√
2

∞X
=−∞


−

2
 1

2
b(
2
) (1 3)

b () = 
³
2

´ b(
2
) (535)

with (


2
) =

1√
2

∞X
=−∞


−

2
 (535)

If finitely many  6= 0 then the function () is almost everywhere convergent because
kk = 1, is 2−periodic and a trigonometric polynomial.
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Theorem 5.16 implies

1

2
=

X


¯̄̄b( + 4)¯̄̄2 +X


¯̄̄b( + 2 + 4)¯̄̄2
=

X


¯̄̄
(



2
+ 2)

¯̄̄2 ¯̄̄b(
2
+ 2)

¯̄̄2
+
X


¯̄̄
(



2
+  + 2)

¯̄̄2 ¯̄̄b(
2
+  + 2)

¯̄̄2
=

¯̄̄
(



2
)
¯̄̄2X



¯̄̄b(
2
+ 2)

¯̄̄2
+
¯̄̄
(



2
+ )

¯̄̄2X


¯̄̄b(
2
+  + 2)

¯̄̄2
=

¯̄̄
(



2
)
¯̄̄2
Φ(



2
) +

¯̄̄
(



2
+ )

¯̄̄2
Φ(



2
+ )

=

µ¯̄̄
(



2
)
¯̄̄2
+
¯̄̄
(



2
+ )

¯̄̄2¶ 1

2


Therefore we get the „FOURIER version” of the consistency condition:

Theorem 5.17 The generating function  of a MSA satisfies the equation

|()|2 + |( + )|2 = 1  

Thus:

• |()| ≤ 1;  ∈ R

• b(0) 6= 0 implies: b(0) =  (0) b(0) y  (0) = 1

• |(0 + )|2 = 1− |(0)|2 = 0 y  () = 0

•  (0) = 1√
2

P
  = 1 y

P
  =

√
2

•  () = 1√
2

P
 

− = 1√
2

P
  (−1) = 0 y

P
  (−1) = 0

Theorem 5.18  ∈ L2 (R)   ∈W0

⇐⇒ ∃ = () ∈ L2 (R2) | b() = exp(
2
)()(

2
+ )b(

2
) (Proof se [1])

The wavelet basis must fill the space L2 (R). By elimination of the spaces W band

filters are defined. The wavelet basis is a basis in the spacesW and the mother wavelet

 has to belong to W0. y Ansatz for b :
b () = 


2

³
2
+ 

´b(
2
) (539)

Theorem 5.19 If  is defined by (5.3.9) then {0}∈Z forms an ONS of W0
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Proof. 1 ∈ L2 (R2) y  ∈W0 because of the previous theorem

y 0 ∈W0

Using theorems 5.16 and 5.18 we prove the orthonormality:

Ψ() =
X


¯̄̄b( + 2)¯̄̄2
=

X


¯̄̄b( + 4)¯̄̄2 +X


¯̄̄b( + 2 + 4)¯̄̄2
=

X


¯̄̄̄
(



2
+ 2 + )

¯̄̄̄2 ¯̄̄b(
2
+ 2)

¯̄̄2
+
X


¯̄̄̄
(



2
+  + 2 + )

¯̄̄̄2 ¯̄̄b(
2
+  + 2)

¯̄̄2
=

X


¯̄̄̄
(



2
+ )

¯̄̄̄2 ¯̄̄b(
2
+ 2)

¯̄̄2
+
X


¯̄̄̄
(



2
)

¯̄̄̄2 ¯̄̄b(
2
+  + 2)

¯̄̄2
=

¯̄̄̄
(



2
+ )

¯̄̄̄2X


¯̄̄b(
2
+ 2)

¯̄̄2
+

¯̄̄̄
(



2
)

¯̄̄̄2X


¯̄̄b(
2
+  + 2)

¯̄̄2
=

1

2

Ã¯̄̄̄
(



2
+ )

¯̄̄̄2
+

¯̄̄̄
(



2
)

¯̄̄̄2!
=
1

2

 ∈W0 implies ∃ = () ∈ L2 (R2) such that:

b() = () exp(


2
)(



2
+ )b(

2
) ( 518)

= ()b() ( 539)

Because of () ∈ L2 (R2) we get () =
P

  exp(−)
with

P
 ||2 = kk ∞ which impliesb() =

X


 exp(−)b()
1⇐⇒

 
() =

X


(− )

=
X


0 is convergent.

y {0}∈Z form a basis in W0

Notation 5.12 The approach for b () is not unique. Factors like
(−1) −

with  ∈ R;  ∈ N are allowed. The multiplication by − corresponds to a trans-

lation of the support of  by  units to the right.
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Inverse FOURIER Transform into the time domain of b ():
b () = 


2

³
2
+ 

´b(
2
)

=
1√
2

X



(
2
+)


2 b(

2
) (because of (535))

=
1√
2

X


(−1) 2 (+1)b(
2
)

=
1√
2

X

(−1)(−1) −−1−2 b(2 ) with  = −e − 1

Application of (1) and (2) implies:

 () =
√
2
X


(−1)−1 −−1(2− )

=
√
2
X


(2− ) with  = (−1)−1 −−1

Another possible definition of  is the following:

 = (−1) 2−1−

 6= 0 for 0 ≤  ≤ 2 − 1 implies  6= 0 for 0 ≤  ≤ 2 − 1
y Summation in the algorithms: 0 ≤  ≤ 2 − 1

Theorem 5.20 Let {V}∈Z be a MSA with the scaling function  and the generating

function   () =
√
2
P

 (2− ) with  = (−1)−1 −−1 This implies:

{ |  ∈ Z  ∈ Z}

is an ONS of L2(R) the wavelet basis. (Proof [1], p. 124)

Example 5.9 HAAR Wavelet:

 =  =

½
1  ∈ [0; 1)
0 

¾
y b () = 1√

2

¡

2

¢
−


2

According to the scaling equation we got:



5.3. MULTISCALEANALYSIS - MSAORMULTIRESOLUTIONANALYSISMRA77

 = 1√
2
−10 +

1√
2
−11 y 0 = 1 =

1√
2

y

 () =
1√
2

X



−

=
1√
2
(
1√
2
+
1√
2
−)

=
1

2
(1 + −)

= −

2
1

2
(


2 + −


2 )

= −

2 cos



2

Thus


³
2

´b³
2

´
= −


4 cos



4

1√
2


³
4

´
−


4

= −

2
1√
2

cos 
4
sin
¡

4

¢

4

2

2

= −

2
1√
2

sin
¡

2

¢

2

= b ()
After an inverse Fourier transform we get, by the approach b () = 


2

¡

2
+ 

¢b ¡
2

¢
,

a function  which is translated one unit to the left and multiplied by (−1) with respect
to   Therefore we use :

b () = −−2
³
2
+ 

´b³
2

´
= −−2 cos(1

2
(


2
+ ))

1
2
(
2
+) 1√

2

³
4

´
−


4

= −−2 (− sin 
4
) ·  · 1√

2

³
4

´
=

√
2

sin2
¡

4

¢

4

−

2

= b ()

We calculate the coefficients  by the inverse Fourier transform of b () into the
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time domain:

b () = −−2
³
2
+ 

´b³
2

´
=

1√
2

X



(

2
+)(−−2 )b³

2

´
(replacement of H)

=
1√
2

X


(−1) (−1)2 b³
2

´
(−1)

=
1√
2

X


(−1)+1 −(1−)2 b³
2

´
=

1√
2

X

(−1)2− 

1−−2 b³2´ (e = 1− )

and get  :

 () =
√
2
X


(−1)2− 1−(2− )

=
√
2
X


(2− )   = (−1)2− 1−

 = (−1)2− 1− = (−1) 1−
0 = 1 =

1√
2

1 = −0 = − 1√
2

Thus:

 () =
√
2(
1√
2
(2)− 1√

2
(2− 1))

= (2)− (2− 1)
=

1√
2
−10 −

1√
2
−11

=  ()

As we are able to construct a MSA by  =  (see previous example) there exists two

paths to the HAAR wavelet:

1. construction by the spaces V W and the corresponding projection operators

  and
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2. a general construction by the induced wavelet.

Summary:

Theorem 5.21  ∈ L1 ∩ L2 and satisfies the scaling equation:
 () =

√
2
P∞
−∞ (2− );

R
R  ()  6= 0;

 ∈ V ⇐⇒ (2·) ∈ V0;
V0 = { ∈ L2(R) |  () =

P
 (− );

P
 ||2 ∞}

If there exists constants  such that

0   ≤  and  ≤ Φ () =
P

 |b( + 2)|2 ≤    then:

1. {0 = (·− )}∈Z is a frame with the bounds 2 and 2

2.
be () = b ()p

2Φ ()
defines a MSA with the same spaces V;

{0 = (·− )}∈Z is an ONS of V0
Proof: [1], p. 128ff

Notation 5.13 Every MSA induces orthogonal wavelet families. The converse is not

true. (counterexample see [2], p. 118).

Notation 5.14 A method of construction for a wavelet basis:

1. Definition of a scaling function  with a nonvanishing average

2. Construction of the spaces V

3. Check whether {0}∈Z is an ONS of V0:X


|b( + 2)|2 ?
=
1

2
 

Yes No

{0}∈Z is a tight frame Search constants  

for the theorem above

{0}∈Z is a framebe () = b () be () = b ()p
2Φ ()
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4. Construction of the MSA corresponding to
be ()

5. calculation of the scaling coefficients 

6. Construction of the wavelet basis by the wavelet functions

Notation 5.15 Problems during this process are

• the orthogonalisation and
• the calculation of the coefficients  if e has not a compact support.

5.4 Fast Algorithms

The starting point is the scaling equation together with the corresponding equation for

 () :

 () =
√
2

∞X
=−∞

(2− )

 () =
√
2

∞X
=−∞

(2− )

  = (−1)−1 −−1   = (−1) 2−−1
This results in:

 () = 2−

2

µ


2
− 

¶
= 2−


2
+ 1
2

∞X
=−∞



µ
2

µ


2
− 

¶
− 

¶

= 2−(
−1
2
)

∞X
=−∞



µ


2−1
− 2 − 

¶

=

∞X
=−∞

−12+ () (541)

and similarly

 () =

∞X
=−∞

−12+ ()  (541)

This recursion forms the basis for a fast algorithm.
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5.4.1 Analysis of  ∈ L2(R)
The finest scale to be considered belongs to  = 0

1. Start at  = 0 :

0 = ( 0)L2 =

Z
R
()(− ) (numerical integration)

0 =
X


00

2. Proceed in the direction of increasing  = +1, i.e. in the direction of longer and

longer wavelengths.

Let  ≥ 1; −1 are known.
−1 describes details of  having a spread ≥ 2−1 on time axis.

−1 =
∞X

=−∞
−1−1

 = ( )L2

=

∞X
=−∞

( −12+) ( 541)

=

∞X
=−∞

−12+ (542)

 =
X




This corresponds to the next more coarse approximation of  Further

−1 =  +

such that  ∈W where {} is an ONS. y

 =

∞X
=−∞



 = ( )

=

∞X
=−∞

( −12+) ( 541)

=

∞X
=−∞

−12+ (543)
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Therefore the information about the signal  which is extracted from −1 is saved
in the vector  It contains information about details of  which have a spread of size

≈ 2−1
2 on the time axis. During this process  is made „coarser by factor two”.

Calculation scheme:

a0 a1

d1

Ja

Jd

(5.4.2) (5.4.2) (5.4.2)

(5.4.3) (5.4.3) (5.4.3)

d2

a2

Algorithm:

Input of 0 and of the depth of the decomposition 

for  = 1 to 

calculate  by (5.4.2)

calculate  by (5.4.3)

end

Output of   1 

Notation 5.16 Vector 0 should be calculated numerically. But usually  is only re-

presented by a discrete data set { ()}. If  is small, the values  () are nearly
constant and if

R
R  = 1 then we can use 0 =  ()   ∈ Z.

Notation 5.17 When computing (5.4.2) and (5.4.3) we only need the coefficients 
and , not the functions  and !!!  and  are computed and saved once and used

for all subsequent calculations (see tables below).

5.4.2 Synthesis

1. Start: Given   1   We are looking for 0 | 0 =
P

 00

2.

−1 =  + =
X


 +
X
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On the other hand we have

−1 =
X


−1−1

−1 =
¡
−1 −1

¢
=

X



¡
 −1

¢
+
X



¡
 −1

¢
=

X




Ã ∞X
=−∞

−12+ −1

!
+
X




Ã ∞X
=−∞

−12+ −1

!
=

X


−2 +
X


−2 (544)

because  = 2 +  implies  = − 2

Calculation scheme:

h h h

g g g

a1 a0Ja 2Ja 1Ja

d1Jd Jd 1

Complexity:

Assumption:  has a compact support.

y  () = inf{ |  () 6= 0} !
= 0

y  () = sup{ |  () 6= 0} !
= 2 − 1;  ≥ 1

y  6= 0;  = (−1) 2−1− 6= 0 for 0 ≤  ≤ 2 − 1
The vector 0 contains all information we want to use about the signal  ∈ L2 (R).

Theorem 5.22  (0) ⊂ [0 ; 2);  (0) = 2


implies 
¡

¢ ⊂ [−2 + 2 ; 2−); for  ≥ 0

Proof. Base clause:  = 0,  (0) ⊂ [−2 + 2 ; 2) : satisfied by assumption

Induction hypothesis: 
¡
−1

¢ ⊂ [−2 + 2 ; 2−+1)
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Induction step:  ≥ 1 : transition from  − 1 to  :

 =

2−1X
=0

−12+ 6= 0

⇐⇒ ∅ 6= {2 2+ 1  2+ 2 − 1} ∩ [−2 + 2; 2−+1)

⇐⇒ 2  2−+1 ∧ 2+ 2 − 1 ≥ −2 + 2

⇐⇒   2− ∧  ≥ −2 +
3

2

2n

-2N+2

2n+2N-1

2J-j+1

xt

y  ∈ [−2 + 2; 2−)
The process terminates after  =  steps because 

¡

¢
stagnates at

[−2 + 2 ; 0)

Now we are looking for the number of multiplications  carried out up to this point:


¡

¢
= 

¡

¢ ≤ 2− + 2 − 2

Computation of  requires at most () = 2 multiplications.

 ≤ 2 · 2 ·
X
=1

(2− + 2 − 2)

= 2 · 2 · (2 − 1 + (2 − 2)) (geometric series)

= 2 · 2 · 2
µ
1 +
−1 + (2 − 2)

2

¶
= 2 · () ·  (0) (1 + (1))

∼ ( (0))

5.4.3 Tables

Tables of the coefficients  and  and figures of the mother wavelet and the Scaling

functions are shown in [1], [2], [8]. For example the following representations were taken

from there:
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Example 5.10 DAUBECHIES-Wavelets: Table of the coefficients 
 = 1 corresponds to the HAAR wavelet.

  = 1  = 2  = 3  = 4  = 5

0

1

2

3

4

5

6

7

8

9

1√
2

1−√3
4
√
2

0332671 0230378 0160102

1√
2

3−√3
4
√
2

0806892 0714847 0603829

3+
√
3

4
√
2

0459878 0630881 0724309

1+
√
3

4
√
2

− 0135011 − 0027984 0138428

− 0085441 − 0187035 − 0242295

0035226 0030841 − 0032245

0032883 0077571

− 0010597 − 0006241

− 0012581

0003336

DAUBECHIES Wavelet for  = 2 :
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Example 5.11 MEYER-Wavelet, table of the coefficients:

Meyer Wavelet

with  = 3

Meyer Scaling function

with  = 3
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Example 5.12 BATTLE-LEMARIE-Wavelet for  = 3 :

Table of the coefficients:

BATTLE-LEMARIE-

Wavelet with  = 3

BATTLE-LEMARIE-

Scaling function

with  = 3
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6 Applications

The goal of signal processing is to extract information from the signal  ∈ L2(R), for
example the occurrence of

• predefined patterns,
• periodic components
• jumps and
• irregularities.

The wavelet transform is useful if the desired phenomena have multi-scale structure,

such as edges, jumps, locally varying order of differentiability etc., which can be recogni-

zed by the asymptotic behavior at the discontinuity. This is a big advantage compared

with the FOURIER transform, which „smeared” these phenomena over R .

6.1 Preliminaries

In practice we know discrete values of a measured signal:

 = ();  ∈ Z;   0 : sampling rate.

It is convenient to choose  = 2.

1. Adaptation to the wavelet transformation:

It is possible to interpret the values  as expansion coefficients of a function e in
accordance with the scaling function because

½
 = 2

−

µ


2
− 

¶¾
∈Z

is an

ONS in V:

e () =X
∈Z

(
−1− ) =

X
∈Z

 ()

µ



− 

¶
  = 2 (611)

But we need the coefficients of an expansion of e in V0, calculated by 
1. Possibility: Use of special quadrature formulas for 0 = ( 0)L2(R) 

2. Possibility: It can be shown:

e () = 1



Z
R
 ()

µ



− 

¶
 =  + () 

89
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assumed that  ∈ C1 (R)  R
R  ()  = 1 e = e () ([2], p. 203). With the

substitution  = 

respectively  =  we get by (611):

 () = e () =X
∈Z

(



− ) ∈ V0

That’s why the sampled signal {} can be used as input data!
2. Displaying of the results of the wavelet transform:

Consider for example scale diagrams.

Colour the rectangles of the − −plane corresponding to the to the size of the
associated coefficient. If the mother wavelet is concentrated about  then a large

wavelet coefficient  means that a significant detail of size 2
 occurs in f, in

the neighborhood of the point ( + )2 in the scale 2. Thus the coefficient

 and the rectangle of width 2 around the point (+ )2 are coupled.

Example: scale diagram with 8 steps:
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3. Selection: Continuous Wavelet Transform (CWT) or Fast Discrete Wa-

velet Transform (FDWT)

This question is relevant, because the translation invariance of the CWT is lost by

discretisation onto the plane using a logarithmic grid. Then the points (2 2)

of the grid do not go into other grid points (see transparency no. 23).

The numerical calculation of the CWT requires a large computational effort. In-

tegrals of inner products must be computed by discretisation. If ()  ∈ Z
is a sampled sequence, then it is useful to require the translation invariance only

to multiples of .

y discretisation ( ) = ( ) ;  ∈ Z; for every 
y application of quadrature formulae

y fine raster image

The direct comparison of CWT and FDWT results:

CWT FDWT

high computational effort less

yes translational invariance no

easy interpretability difficult

easy, but very extension to several dimensions difficult, but

high effort already done

To avoid this selection problem between CWT and FDWT a mixed form was

designed: the „Algorithme à trous”, which combines the advantages of both wa-

velet transforms. It is relatively fast: Assume the length of the signal is  .Then

the FDWT calculates 2 coefficients and the „Algorithme a trous” 2 coeffi-

cients during  steps of the algorithm. The scale diagrams are „continuous” with

respect to  and they are easier to interpret than diagrams of the FDWT [3] (see

transparency no. 24).

6.2 Data Compression

Data compression is the most successful application of the wavelet transform, but

it also works with the Fourier transform or the cosine transform. Data compression is

necessary for the real-time transmission and saving of images. This makes high demands

on computing time and memory capacity. The assessment is based on the compression

rate  :

 =
Memory requirements of the original

Memory requirements of the compressed file

Technical details:
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• A digitalized black and white image corresponds to a ( )−matrix of gray values
of the respective image pixels.

• Coloured images correspond to 3 pictures for the colours red, blue and green.
This RGB representation is transferred into a another representation which uses

one brightness and two colour values because brightness variations are registered

by the eye very well, however, less color differences.

• Principle:

   Transformation Quantisation  Entropy
 Coding

WT, FT,
Cosinustransf.

Irreversible
Loss of 
Information!!

Creation of a 
bit string as 
small as possible

f B(ck)k  J (ck)k  J

Transform:

For the Fourier and cosine transforms the image must first be broken down into sub-

images for resolving local details because sine and cosine functions have unrestricted

support. The boundaries of the sub-images are usually visible after the inverse trans-

form with large .

In the case of the wavelet transform it is possible to use the two-dimensional wavelet

transform. In this case no decomposition into sub-images is required. But a more com-

mon case is the use of tensor wavelets. In this case rows and columns are transformed

by one-dimensional algorithms.Then we get sequences of matrices with the decompo-

sition coefficients which can be saved in place. The selection of the mother wavelet is

a problem because the choice depends on the structure of the signals.

Quantisation:

The simplest type of quantisation is the uniform scalar quantisation. This means roun-

ding to integer multiples of the quantisation step 4  0 If „quantisation tables” are

used, then they have a significant influence on the quality of compressed images. The er-

ror arises here. After the inverse transform it manifests itself in the approximated signal

values e .  − e is called quantisation noise. Measurements are, for example, °°° − e°°°
or
°°° − e°°°2 = P

∈
| − e|2 or the (mean square error) = 1



−1P
=0

¯̄̄
 − e ¯̄̄2. If

is the allowed extension of the range of  , then we obtain for the ratio 2


measured
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in decibels

 = 10 log10
2


  = 10 log10

2

−1P
=0

¯̄̄
 − e ¯̄̄2

(PSNR: Peak Signal to Noise Ratio) by sampling of  values,  = 1

Entropy-Coding:

Techniques like Huffman coding or run-length coding are used to get vectors as close

as possible to the optimal bit length.

For examples of original and compressed images see [2] and transparencies no. 26-27.

6.3 Denoising - Noise Suppression

Denoising by wavelet transform gives the best results with the least effort. As above,

thresholding is performed instead of quantisation (small wavelet coefficients are zeroi-

zed). By the inverse transform we then get a less noisy signal. To obtain good results,

the following requirements must be satisfied

• The noise level kk is small in relation to
°°°° 

• The original signal can be well represented by few coefficients in the new basis.
Therefore it is very suitable for compression.

• The noise is not well compressed in the new basis . (Random noise cannot be

compressed by any ONS.)

There are essentially two options for thresholding:

1. „Hard Thresholding”:

 =

½
0 for || ≤ 

 otherwise

2. „Soft Thresholding”:

 =

½
0 for || ≤ 

()(||− ) otherwise

For the definition of  , a statistical model for the noise is required, for example white

noise with the standard deviation  is used

 = 

 +   : values of (0 1)  = 0  − 1
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This results in an estimation for  and  :

 = 
p
2 ln();  = (1)

 ≈ Median of the modulus of the wavelet coefficients

06745

Application of denoising:

• Clarification of audio signals

• speech recognition

• Preparing data for ill-conditioned inversion problems, such as in computer tomo-
graphy or economic data ....

Example 6.1 Clarification of a noisy signal [3]:

original signal

noisy signal,

 = 03

wavelet

coefficients,

 = 1

 = 1

with the compression rate 
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6.4 Feature Detection

A feature detection algorithm finds many applications: such as in medical examination

for the evaluation of ECG, EEG, ultrasonography, phonocardiogram etc. Comparisons

between the wavelet transform, the FOURIER transform, the Short-Time FOURIER

transform, the WIGNER distribution and other transforms always bring the same

result: The wavelet transform gives the best results. The reason for this lies in the

transient character of biological signals. Basically, these signals are periodic functions

with short time disorders and/or varying period and/or with a high noise level. Usually

it is desirable to detect short peaks in the signal which can be of high energy and

which can recur at irregular intervals. Problems lie in the delimitation of noise, in the

delineation of similar signal components and the definition of artifacts.

Example 6.2 ECG [2]

For example the following questions are investigated: Is the rhythm of the heart valves

synchronous to the rhythm of the main heart muscle? Is the main muscle relaxed bet-
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ween contractions? If not, then that is an acute alarm signal of sudden cardiac death

and other serious heart diseases (see transparency no. 29).

Example 6.3 EEG [6]

In the evaluation of EEG epileptic spikes are sought. These are short energetic spikes,

followed by long flat waves. These epileptic spikes are also found between attacks and

they are used for the diagnosis.

The signal is a sampled electrical voltage. The energy of the signals is proportional to

kk  and by PLANCHEREL’s theorem we get :

kk2 =

Z
| () |2 = 1



ZZ ¯̄̄̄
 ( )



¯̄̄̄2


∼
X


1

2

X


||2

(see transparencies no. 30-31)

Example 6.4 Reliability of gear systems [5]

The problem is to optimize the maintenance strategy, to ensure the reliability of the

gear drive. The gear wheels are the greatest source of error, and thus they are the focus

of the diagnosis. Therefore the vibration signal which is caused by the gearbox will be

analysed. This is a long and difficult process. It goes from a rotor synchronized samp-

ling, over denoising and elimination of other periodic but non rotor synchronous signal

components, to the analysis of the true vibration signal of the gearbox by CWT with the

Morlet wavelet and to a user-friendly angle-order representation (see transparencies

no. 32-36).

There are many other uses for the wavelet transform, for example edge detection in

images, troubleshooting in woven and knitted fabrics, image analysis in mammogra-

phy, effective memory algorithms, broadband communications .... In mathematics, the

wavelet basis will also be investigated for use in the Galerkin method for boundary

value problems for partial differential equations.


