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1 Metric Spaces

A set of common mathematical objects with equal properties is called a space. The

„easiest” one is the metric space. It belongs to the topological spaces.

Example 1.1 R3 = {x = (1 2 3) |  ∈ R;  = 1 2 3}
* You are surely familiar with this 3-dimensional Euclidian space. It is a set of points

with 3 components

* The distance between the points xy ∈ R3 is defined by:
(xy) =

p
(1 − 1)2 + (2 − 2)2 + (3 − 3)2

*  is something which can be measured (ruler!) and it is nonnegative.  is equal to

zero if and only if you calculate ( ). The distance between x and y is the same as

the distance between y and x. Also  satisfies the triangle inequality. (∗)
* The definition of the distance  gives us the possibility to describe the geometry of

real objects and their position (length, width, height, radius, shape,...).

* In mathematics the function of distance is called the metric or the metric function.

Its definition is not unique. If  satisfies only the properties (∗) then  is a metric.

* The metric  defines a topology. That means you can define a special system of open

sets in R3 which is based on the metric function. On this system of open sets you can

do analysis in R3, for example you can define the limit of a sequence of elements of
R3, you can define the continuity of functions, derivatives, integrals,...

Our goal is now to introduce the metrics for common sets of mathematical objects, for

example in sets of functions, sequences, bodies, differential equations,... To get a metric

space the metric function must satisfy the three conditions (∗). In metric spaces you
can define a topology and do analysis.

1.1 Metric spaces

Definition 1.1 A metric space X is defined to be a nonempty set X together with a
real function  X ×X→ R, satisfying 3 conditions:

1. (xy) ≥ 0 ∧ (xy) = 0 ⇐⇒ x = y (nonnegativity, nondegeneracy)

2. (xy) = (yx) ∀xy ∈ X (symmetry)

3. (xy) ≤ (x z) + (zy) ∀xy z ∈ X (triangle inequality)

3



4 KAPITEL 1. METRIC SPACES

(xy) is called the distance function or theMetric in X.

Conclusion 1.1 Common triangle inequality

 (x1x) ≤  (x1x2) +  (x2x3) + +  (x−1x) ∀x1x2 x ∈ X

Conclusion 1.2 |(x z)− (y z)| ≤ (xy) ∀xy z ∈ X

Proof.

(x z) ≤ (xy) + (y z) y (x z)− (y z) ≤ (xy)

(y z) ≤ (yx) + (x z) y (y z)− (x z) ≤ (yx)

Conclusion 1.3 Continuity of the metric

|(xy)− (x0y0)| ≤ (xx0) + (yy0) ∀xx0yy0 ∈ X

Proof. .

(xy) ≤ (xx0) + (x0y0) + (y0y)
(x0y0) ≤ (x0x) + (xy) + (yy0)

x y

x'

y'

d(x,y)

d(x',y')

What are some examples of metric spaces in addition to R3?

Example 1.2 X = R : (xy) = |x− y| ∀xy ∈ R

Example 1.3 X = R2 : (xy) = |1 − 1|+ |2 − 2| ∀x =
¡
1
2

¢
y =

¡
1
2

¢ ∈ R2
In these two examples the triangle inequality is based on the triangle inequality of the

real numbers.

Example 1.4 X = R or X = C

) (xy) = max
1≤≤

|  − |

) (xy) =

µ
P
=1

|  − |
¶1

for 1 ≤  ∞
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Proof. of the triangle inequalities:

a)

| − | ≤ | − |+ | − |
≤ max

1≤≤
| − |+ max

1≤≤
| − |

max
1≤≤

| − | ≤ max
1≤≤

| − |+ max
1≤≤

| − |

b) By the Minkowski inequality we get:

(xy) =

Ã
X
=1

| − |
!1

≤
Ã

X
=1

| − |
!1

+

Ã
X
=1

| − |
!1

= (x z) + (zy)

Example 1.5 Let X be the set of all sequences of real or complex numbers
x = {}∞=1 , y = {}∞=1 

) (xy) =

µ∞P
=1

|  − |
¶1

for 1 ≤  ∞

∀ xy ∈ X with
∞P
=1

| | ∞ and
∞P
=1

| | ∞
) (xy) = sup



|  − |
∀ xy ∈ X with sup



| |∞ and sup


| |∞

Proof. of the triangle inequalities:

a) By the Minkowski inequality we get:

(xy) = lim
→∞

Ã
X
=1

| − |
!1

≤ lim
→∞

⎡⎣Ã X
=1

| − |
!1

+

Ã
X
=1

| − |
!1⎤⎦

= (x z) + (zy)
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This is possible because we get on the same way

(xy) = lim
→∞

Ã
X
=1

| − 0 + 0− |
!1

≤ lim
→∞

⎡⎣Ã X
=1

||
!1

+

Ã
X
=1

||
!1⎤⎦ ∞

b)

| − | ≤ | − |+ | − |
≤ sup



| − |+ sup


| − |
sup


| − | ≤ sup


| − |+ sup


| − |

and analogous to a):

(xy) ≤ (x 0) + (0y)

≤ sup


||+ sup


|| ∞

Example 1.6 X = [ ] : set of all continuous functions f () with real or complex

values over [ ]

(f g) = max
≤≤

| f ()− g () |  f g ∈ C [ ]

Proof. of the triangle inequality:

|f()− g()| ≤ |f()− h()|+ |h()− g()| ∀ ∈ [ ]
≤ max

∈[]
|f()− h()|+ max

∈[]
|h()− g()|

max
∈[]

|f − g| ≤ max
∈[]

|f − h|+ max
∈[]

|h− g|
(f g) ≤ (f h) + (hg) ∀h() ∈ C [ ]
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g(t)

f(t)

t

f,g,h

h(t)

d(f,g)

d(g,h)

d(f,h)

a b

Example 1.7 X− set of all continuous functions f () with real or complex values over
any interval ( ), such that:

R


| f () | ∞

(f g) =

µ
R


| f ()− g () |
¶1 ∀ f g ∈ X

1 ≤  ∞
The triangle inequality can be proven using the MINKOWSKI inequality:⎛⎝ Z



| f ()− g () |
⎞⎠1

≤
⎛⎝ Z



| f ()− h () |
⎞⎠1

+

⎛⎝ Z


| h ()− g () |
⎞⎠1

Therefore X is a metric space. Interpretation for  = 1:

(f g) =

Z


| f ()− g () |

g(t)

f(t)

t

f,g

a b

This is the absolute value of the area between the two functions in the interval [ ].
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1.2 Fundamentals of Topology

Definition 1.2 Let (X ) be a metric space, x0 ∈ X; The set
(x0) = {x ∈ X | (xx0)  }

is called an open ball centered at x0 with the radius , or is called the − neighbour-
hood of x0

Definition 1.3 The proper subset  ⊂ X is called open, if
∀x ∈  ∃  0 | (x) ⊆ 

Definition 1.4 The proper subset  ⊂ X is called the neighbourhood of x0, if it

contains an −neighbourhood of x0.

X
U

x0

e

Now we want to discuss some examples of open balls.

Example 1.8 X = R; (xy) = |x− y|
Open balls are the the open intervalls (x0 − ;x0 + ).

( )
x0x0 - ε x0 + ε

Example 1.9 X = R2 xy ∈ R2 x = (1 2)  y = (1 2)
a) (xy) = |1 − 1|+ |2 − 2|

(x0) =
©
x = (1 2)

∈ R2 | |1 − 01|+ |2 − 02|  
ª

For an interpretation we use the equality |1 − 01|+ |2 − 02| =  In a first case we

get by applying the definition of the absolute value

1 − 01 + 2 − 02 = 

2 = −1 + (+ 01 + 02)
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This is a linear equation in 1 and 2.

x01 - ε x01 + εx01

x02

x02 - ε

x02 + ε

x1

x2

x0

b) (xy) =

q
(1 − 1)

2
+ (2 − 2)

2

(x0) =
©
x = (1 2)

∈ R2 | (1 − 01)
2
+ (2 − 02)

2
 
ª

This is the interior of a circle centered at x0 with the radius  = .

x01

x02

x1

x0

x2

Example 1.10 X =[ ]; (f g) = max
≤≤

|f()− g()|

(f0) =

½
f() ∈ [ ] | max

≤≤
|f()− f0()|  

¾
y |f()− f0()|   ∀ ∈ [ ]
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t

f(t)

f (t)

f (t) + ε

f (t) - ε

a b

Theorem 1.1 For any (countable) collection {}   ∈  of open sets, the union

∪
∈

 is open.

Proof. Let A be the union  = ∪
∈

 and x ∈  y ∃0 | x ∈ 0

0 is an open set. y ∃  0 | (x) ⊆ 0 ⊂ 

Theorem 1.2 For any finite collection {}=1 of open sets, the intersection
∩
=1

 is

open.

Proof. Let A be the intersection  =
∩
=1

 and x ∈  y x ∈  ;  = 1 2  

y ∃  0 | (x) ⊆  ;  = 1 2  

 = min
1≤≤

  0 because of the finite number of sets.

y (x) ⊂  ;  = 1 2   y (x) ⊂ 

Notation 1.1 For any (countable) collection {}   ∈  of open sets, the intersec-

tion ∩
∈

 is not open in general.

Example 1.11 X = ; (xy) = |x− y|
 =

¡− 1

; 1 + 1



¢
;  = 1 2  ⇒ ∞∩

=1
 = [0; 1] is closed.

Notation 1.2 The metric space X and the empty set ∅ are open.
(By definition the empty set ∅ fulfills any condition.)

Definition 1.5 0 is an interior point of , i.e. 0 ∈


 ⇐⇒ ∃  0 | (0) ⊂ 

Notation 1.3 The set  ⊂ X is open ⇐⇒ any point of  is an interior point.
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Definition 1.6 The proper subset  ⊂ X is called bounded, if  is completely con-

tained within an open ball () y ∈ X, 0   ∞.

Kr(y)

A

y

r

X

Theorem 1.3 For any finite collection {}=1 of bounded sets, the union
∪
=1

 is

bounded.

Proof. Let A be the union  =
∪
=1

 → ∃ ∈ R y ∈ X |  ⊆ (y);  =

1 2  

 = max
2≤≤

(yy−1) ∞. We define y = y1 and choose any x ∈ .

Without loss of generality x ∈  implies

(xy) = (xy1)

≤ (xy) + (yy−1) + + (y2y1)

≤  + (− 1) =  ∞ y

x ∈ (y = y1)

Notation 1.4 For any (countable) collection {}   ∈  of bounded sets, the union

∪
∈

 is not bounded in general:

Example 1.12 X = R; (xy) = |x− y|
 = [; + 1);  = 0 1 2  → ∪


 = [0;∞)

Definition 1.7 The point x0 ∈ X is a limit point of a set  ⊂ X , if every open ball
centered at x0 contains a point x ∈ ; x 6= x0. The set of all limit points of  is

called the derivated set +
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Definition 1.8 The set  =  ∪+ is called the closure or the closed cover of 

Definition 1.9 The subset  ⊂  is called closed, if + ⊆ 

Definition 1.10 The set  is called dense in , if  ⊂  ∧  = 

Example 1.13 X = R : (xy) = |x− y|
a)  = [0; 1] :

 = + = ; All points of  are limit points.

b)  = (0; 1) :

 ⊂ + =  = [0; 1] = ;

c)  = { 1

|  ∈ N;  6= 0}

The only one limit point is x0 = 0: 
+ = {0}

 is not closed because of + * 

 is not open in R

d) The set Q of the rational numbers is dense in R

Notation 1.5 For any collections of closed sets the intersection is closed and for any

finite collection of closed sets the union is closed, too.

Notation 1.6 The empty set and X are closed sets.

Notation 1.7 The subset  ⊂ X is closed ⇐⇒  = X \  is open.

1.3 Convergence and Completeness

Let X be a metric space with the distance function (xy) xy ∈ X

Definition 1.11 A sequence {x}∞=1 ⊂ X is called convergent, if there exists an

element x0 ∈ X fulfilling the condition lim→∞ (xx0) = 0 x0 is called the limit of

the sequence.

We write: lim→∞ x = x0 or x
→∞→ x0 or in  − −notation:

∀  0 ∃0() | (xx0)   ∀  0

Theorem 1.4 The limit of a sequence is unique.

Proof. We suppose that x0 y0 are limits of the sequence {x}∞=1 and x0 6= y0 y

0 ≤ (x0y0) ≤ (x0x) + (xy0)

As  tends to infinity we get (x0y0) = 0 Contradiction
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Example 1.14 X = R (xy) =
p
(
P

=1( − )2) :

lim→∞ x = x0; x =

⎛⎜⎝ 1
...



⎞⎟⎠ x0 =

⎛⎜⎝ 01
...

0

⎞⎟⎠
⇐⇒ (xx0) =

r³X

=1
( − 0 )

2

´
→∞→ 0

⇐⇒ ( − 0 )
2 →∞→ 0 ∀

⇐⇒ 
→∞→ 0 ∀

Convergence in the Euclidian Space is convergence by coordinates, is equivalent to con-

vergence of all components.

Example 1.15 X =[ ] (xy) = max
≤≤

|x()− y()| :

lim
→∞

x() = x0()⇐⇒ (xx0) = max
≤≤

|x()− x0()| →∞→ 0

y ∀  0 ∃0() ∈ N | |x()− x0()|   ∀  0() ∀ ∈ [ ]
y 0() is independent of 

Convergence of a sequence of functions in [ ] is uniform convergence with respect

to .

Example 1.16 X =[ ] (xy) =
³R 


|x()− y()|

´ 1


;  ≥ 1  ∈ N fixed:

lim
→∞

x() = x0()⇐⇒ (xx0) =

µZ 



|x()− x0()|
¶ 1



| →∞→ 0

This is called convergence in the p-th mean. If  = 2 the convergence is called conver-

gence in quadratic mean.

Notation 1.8  ⊂ X; x0 ∈ + ⇐⇒ ∃{x |  6= 0}∞=1 ⊂  with lim→∞ x = x0

Definition 1.12 Cauchy sequence

A sequence {x}∞=1 ⊂ X is said to be Cauchy, if given any   0 there exists an

integer 0() such that ()   whenever   0()

 lim→∞ () = 0

Theorem 1.5 Any convergent sequence in X is Cauchy.

Proof. Assume that {x}∞=1 converges and let be   0 :
y ∃x0 ∈ X 0 ∈ N 0  0 | (xx0)  

2
∧ (xx0) 


2
∀  0

y (xx) ≤ (xx0) + (x0x)   ∀  0
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Notation 1.9 In general the converse of this theorem is not true! It is possible, that

a Cauchy sequence tends to a limit which is not an element of the space X.

Example 1.17 X = (0; 1); (xy) = |x− y|
We choose x =

1

: {x}∞=1 is Cauchy in X because we get 0() =

£
2


¤
+ 1 ∀  0

(square brackets = whole number).

Then

(xx) =

¯̄̄̄
1


− 1



¯̄̄̄
≤ 2

0
  ∀  0

but the limit x0 = 0 ∈ X. =⇒ {x}∞=1 is not convergent in X by definition.

Definition 1.13 A metric space X is complete, if every Cauchy sequence in X con-
verges to a point of X.

Example 1.18 X = R (xy) =
p
(
P

=1( − )2) is complete:

Let {x}∞=1 be Cauchy in R y

∀  0 ∃0() | (xx) =
rX

=1
( − )

2   ∀   0 y¯̄
 − 

¯̄
  ∀   0 ∧  = 1 2  

y { }∞=1 is Cauchy in R ∀. R is complete.
y ∃ the limit 0 ∈ R for  = 1 2  

y ∃ the limit x0 =

⎛⎜⎝ 01
...

0

⎞⎟⎠ ∈ R

Example 1.19 X = [ ] (xy) = max
≤≤

|x()− y()| is complete:
The proof consists of three parts :

1) We construct an element x0() which can be the limit of a Cauchy sequence.

2) We show that x0() is the limit of the sequence.

3) We prove that x0() ∈ [ ]

1) Let {x()}∞=1 be Cauchy in [ ] y

∀  0 ∃0() | (x()x()) = max
≤≤

|x()− x()|   ∀  0

y |x()− x()|   ∀  0 ∀ ∈ [ ]

Let  be fixed. y {x()}∞=1 ⊂ R and

∀  0 ∃0() | |x()− x()|   ∀  0
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means {x()}∞=1 is Cauchy in R. R is complete.

y x()
→∞→ x0() ∀ ∈ [ ] (∗)

y x0() is a function defined at [ ].

2) (∗) implies
|x()− x+()|   ∀  0  ∈ N ∀ ∈ [ ]

As  tends to infinity we get

|x()− x0()|   ∀  0 ∀ ∈ [ ]
y {x()}∞=1 is uniformly convergent at [ ]. The limit is x0().
3) To show: x0() is a continuous function.

x() is continuous. This means

∀  0 ∃  0 | |x()− x(0)|   ∀ ∈ [ ]; |− 0|  ; ∀
and we get

|x0()− x0(0)| ≤ |x0()− x()|+ |x()− x(0)|+ |x(0)− x0(0)|
≤ 3 ∀|− 0|  

Thus x0() ∈ [ ].

t

f(t)

xn(t) 

a bt t0

x0(t0)
x0(t)

x0(t)
xn(t ) 
xn(t) 

Example 1.20 X = Q : The set of all rational numbers with (xy) = |x− y| is not
complete.

Counterexample:
©
x =

¡
1 + 1



¢ª∞
=1
⊂ Q is Cauchy, but limx =  ∈ Q (Euler’s

constant)



16 KAPITEL 1. METRIC SPACES

Example 1.21 X =[0 1] (xy) =
³R 1

0
|x()− y()|2

´ 1
2

is not complete:

Counterexample: Consider the sequence {x()}∞=1 :

x() =

½
13   ≤ 1



−13    1


x() is continuous at [0 1] for all  because lim
→1

−13 =
¡
1


¢− 1
3 = 

1
3  The limit of

{x()}∞=1 is
x0() = −

1
3

because of

( (xx0))
2
=

Z 1

0

|x()− x0()|2

=

Z 1

0

|13 − −13|2
(∗)
≤
Z 1

0

¡
23 + −23

¢


= 23 · 1

+ 3

µ
1



¶13
= 4−13

→∞→ 0

using (∗): (− )
2
= 2 − 2+ 2 ≤ 2 + 2 if    0

But x0() is not continuous at [0 1].

t

f(t)

1/n 1

1/3

t -1/3
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1.4 Compact Sets

Definition 1.14 Let (X ) be a metric space. The subset  ⊂ X is called sequentially
compact, if every sequence {x}∞=1 ⊂  contains a convergent subsequence

{ex}∞=1 ⊂  with lim→∞ex = x ∈ X
Definition 1.15 The subset  ⊂ X is called compact, if every sequence {x}∞=1 ⊂ 

contains a convergent subsequence {ex}∞=1 ⊂  with lim→∞ex = x ∈ 

Notation 1.10  ⊂ X is compact ⇐⇒  ⊂ X is sequentially compact and closed.
Example 1.22 X = R with (xy) = |x−y| : All bounded subsets  ⊂ X are sequen-
tially compact.

For any bounded subset  ⊂ X there exists a closed interval  = [ ] such that

 ⊂ [ ] = 

Look at any sequence {x}∞=1 ⊂  and choose a subsequence {ex} by succesive bisec-
tion in the following way:

During the n-th step take ex from this half of the intervall in which the number of

elements is infinite.

=⇒ (ex ex) ≤ − 

2
   

=⇒ {ex} is Cauchy in R
=⇒ ∃x ∈ X | lim

→∞
ex = x

=⇒  ⊂ X is sequentially compact
Example 1.23 X = R (xy) =

p
(
P

=1( − )2):

All bounded subsets  ⊂ X are sequentially compact:

Let  ⊂ X be a bounded subset and let {x}∞=1 ⊂  be a sequence with x =

⎛⎜⎝ 1
...



⎞⎟⎠ 

Then there exists an element x0 ∈ R with  (x0x) ≤ ∞ ∀

=⇒
¯̄
0 − 

¯̄
≤  = 1 2  

=⇒ {x }∞=1 is bounded in R  = 1 2  

Then there exists a subsequence {ex } ⊂ {x } such that ex →∞→ x  = 1 2  

because of the example above.

=⇒ ex →∞→ x =

⎛⎜⎝ 1
...



⎞⎟⎠ ∈ R

=⇒  ⊂ R is sequentially compact.
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Example 1.24 X =[ ] (xy) = max
≤≤

|x()− y()| :
Let  ⊂ X be bounded and closed:

max
≤≤

|x()| ≤ ∞ ∀x() ∈ 

Let  ⊂ X be equicontinuous:
∀  0 ∃()  0 | |− |   implies |x()− x()|   ∀x ∈ ;

=⇒  is compact in X. (Arzela-Ascoli Theorem)
Proof: s. [3, p.68ff] or [4, p. 20-21]

For example:  = {x() | |x()| ≤1;
¯̄
x


¯̄
≤2;  ≤  ≤ }

y  is bounded and closed.

y The Mean Value Theorem implies |x()− x()| ≤2 |− | 
y  is equicontinuous.

y  is compact.

Conclusion 1.4 In a metric space X every sequentially compact set  is bounded.

Proof. We assume  ⊂ X is sequentially compact and not bounded.
=⇒ ∃{x}∞=1 ⊂  | (x0x) ≥ ; x0 ∈ X

Because of the sequentially compactness of  there must be a convergent subsequence.

Contradiction

Conclusion 1.5 The converse of the above conclusion is not true. A bounded set does

not be necessarily sequentially compact.

Example 1.25 X =2[0 1] (xy) =

qR 1
0
|x()− y()|2

 = {g() = sin()}∞=1

(gg) =

sZ 1

0

|g()− g()|2

=

sZ 1

0

|sin()− sin()|2

=

sZ 1

0

¡
sin2()− 2 sin () sin() + sin2()

¢


=

r
1

2
− 0 + 1

2
= 1

(0g) =

sZ 1

0

sin2() =

r
1

2
∀

 is bounded, but not sequentially compact.
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Auxiliary calculation:R
sin2() =

R
sin2() 


= 1

2
(− sin · cos) + 

= 1
2
(− sin () · cos (())) + 

=⇒ R 1
0
sin2() = 1

2
( − 0) = 1

2

Example 1.26 Let X be the set of all number sequences x = {}∞=1
with

P∞
=1 ||2 ∞ and (xy) = (

P∞
=1 | − |2)

1
2 

Let  be the unit ball:  = {x ∈ X | P∞
=1 ||2 ≤ 1} 

 is bounded and closed. We have a look at the sequence ξ =
©
ξ
ª∞
=1
⊂  with

ξ =

½
0  0 1

 
 0 

¾
=⇒ (ξ ξ) =

√
2   6= 

That’s why you cannot find a convergent subsequence in ξ and the unit ball is not

sequentially compact!

Theorem 1.6 WEIERSTRASS

Let  :  → R be a continuous function on the compact subset  ⊂ X Then  has a

maximum and a minimum on . That means: ∃ x ∈  with (x) = minx∈ (x) ∧
∃ x ∈  with (x) = maxx∈ (x)

Proof. (for the minimum)

We set:  = inf
∈

(x) and have to prove: ∃ x ∈  | (x) = 

Now we build the sequence {x}∞=1 ⊂  such that (x) ≤ + 1

;  = 1 2 

 is compact =⇒ There exists a subsequence {ex}∞=1 ⊂  with ex → x ∈ A as 

tends to infinity.

 is continuous at  and so we get (ex)→  = (x) as  tends to infinity.

Theorem 1.7 If the subset  ⊂ X is compact then there exists a point x0 ∈  such that

(x0y) = min
∈

(xy) for any given point y ∈ X. x0 is called the best approximation
of y in . (In general x0 is not unique!)
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A

xy:





x02

x01

Proof.  = inf
∈

(xy) implies that there exists a sequence {x}∞=1 ⊂  with

(yx) ≤ +
1


  = 1 2 

 is compact =⇒ There exists a subsequence {ex}∞=1 ⊂  with ex → x0 ∈ A as 

tends to infinity.

(yx0) ≤ (yex) + (exx0) →∞→ 

On the other hand we have

(yx0) ≥ 

because 0 ∈ . Thus (yx0) =  and x0 is the best approximation.

Summary:

Compactness is the generalisation of the terms „closed interval” or „bounded closed

set”. Compare this with the real one dimensional analysis: A continuous function has

an extremum on a finite closed interval.
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1.5 Operators

The generalisation of the function concept leads us to the definition of an operator. We

consider two real (or complex) metric spaces (X X) (Y Y) and two subsets
 ⊆ X;  ⊆ Y

Definition 1.16 A unique mapping from  to ,  :  →  is called an operator.

That means, for every x ∈  there exists a unique element y ∈  such that x = y

 is the domain of 

Definition 1.17 The range of  is the set  () = {y ∈  | ∃x ∈   x = y}

Example 1.27 System of linear equations:µ
1 5 3

4 0 7

¶⎛⎝ 





⎞⎠ =

µ




¶
⇐⇒ x = y  x ∈ R3 y ∈ R2  : R3 → R2

Example 1.28 (x) = y ⇐⇒ x = y  x ∈ R+ y ∈ R1  : R+ → R1

Example 1.29 

x() = y()⇐⇒ x = y  x ∈ 1[ ]; y ∈ [ ];

 : 1[ ]→ [ ] : differential operator

Example 1.30 The map

x =

Z 



x()

defines an operator  from [ ] to R : an integral operator

Example 1.31 The map

x() =

Z 



 ( x());  ∈ [ ]

defines an operator  from [ ] to [ ];  is called the kernel of the operator.

Integral and differential equations are rich areas of application for operator theory and

they provided impetus for the early development of functional analysis.

Definition 1.18 The operator  : →  is called

• surjective (onto) ⇐⇒  () = 

• injective (one-to-one)⇐⇒ x = y y x = y
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• bijective ⇐⇒  is surjective and injective.

Example 1.32 X = Y = R A = [ ]  B = [ ]  T : A ⊆ X→ B

� �

�

�

� �

�

�

� �

�

�

� � � � � � � � 	 
 � � � � � � � � � � � � � � �

Definition 1.19 If the operator  : →  is bijective, then there exists the inverse

operator −1 :  → , which is defined by −1y = x ⇐⇒ x = y.

Definition 1.20 The operator  :  ⊆ X →  ⊆ Y is called continuous at

x0 ∈  if ∀  0 ∃ = (0 ) | Y(x x0)   ∀x ∈  with X(xx0)   If

 is continuous at every point x0 ∈  then  is called continuous on  In Addition,

if (0 ) is independent of x0 for all  then  is called uniformly continuous on



Conclusion 1.6 T is uniformly continuous, that means:

∀x ∈  ∀  0 ∃ = () | Y(x y)   ∀y ∈   X(y)  

Theorem 1.8 Let (X X) (Y Y) be two metric spaces and let  : ⊆ X → Y be

a continuous operator from the compact set  to the space Y, then  is uniformly

continuous on .

Proof. Suppose  is not uniformly continuous.

y ∃0  0 and there exist sequences {x}∞=1 ⊂  {y}∞=1 ⊂  such that

X(xy) 
1


 Y(x y) ≥ 0 (∗)

 is compact. This implies that there exists a subsequence {ex}∞=1 with ex → x ∈ 

as  tends to infinity. Thus

X(yx) ≤ X(y ex) + X(exx) →∞→ 0

y 
→∞→ x. T is continuous. y

Y(ex y) →∞→ 0 : contradiction to (∗)
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Definition 1.21 A bijective continuous mapping  :  →  , with a continuous

inverse mapping is called a homeomorphism.

Two set are called homeomorphic ⇔ ∃ homeomorphism  : → .

Example 1.33 The circle  := {( ) ∈ R2 | 2 + 2 ≤ 2} and the
ellipse  := {( ) ∈ R2 | 2

2
+ 2

2
≤ 1} are homeomorphic.

 is given by

 ( ) =

µ



;






¶
;  : → 

A B

x x

y y

center to center

boundary point to boundary point

1.6 The BANACH Fixed Point Theorem

The BANACH fixed point theorem has a very great importance, for example

• in the proofs of theorems of existance and unicity for several mathematical
problems,

• for the solution of operator equations (see numerics).

Let (X ) be a metric space and  be a subset of the space:  ⊆ X

Definition 1.22 Let  be closed. The mapping  :  →  is called a contraction

mapping, if there exists a number 0    1 such that

(x y) ≤  · (xy) ∀xy ∈ 
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Theorem 1.9 BANACH Fixed Point Theorem (FPT)

Let  be a closed subset of the complete metric space (X ) with a contraction mapping
 :  → . Then  admits a unique fixed-point x∗ ∈  i.e. x∗ is the solution of the
fixed point equation x = x

Then the iterative sequence {x}∞=0 which starts with an arbitrary element
x0 ∈  defined by x+1 = x, tends to x

∗ as n tends to infinity.
The following inequalities are true and describe the speed of convergence:

• a priori : (xx∗) ≤ 

1−(x0x1)

• a posteriori : (x∗) ≤ 

1−(−1)

Notation 1.11 The weakening of the conditions leads to generalisations of the BA-

NACH FPT.

Notation 1.12 There are some analogous kinds of FPT which are of interest for the

sake of applications, for example the SCHAUDER FPT (for BVP of pde) or the KA-

KUTANI FPT (for economics).

Proof. Auxiliary calculation: x0 ∈ ; x+1 = x Thus

(xx+1) = (x−1 x) ≤ (x−1x)

= (x−2 x−1) ≤ 2(x−2x−1) = 

≤ −(xx+1)  0 ≤  ≤ 

Therefore we get

(xx+) ≤ (xx+1) + (x+1x+2) + + (x+−1x+)

≤ (xx+1) + (x x+1) + + (x+−2 x+−1)

≤ (1 +  + 2 + + −1)(xx+1)

≤ (1 +  + 2 + + −1)−(xx+1)

=
1− 

1− 
−(xx+1)  0 ≤  ≤ ;  ≥ 1 (∗)

A) Existance: (∗) implies
lim
→∞

(xx+) = 0

y {x}∞=0 is Cauchy in .  is closed,  ⊆ X and X is complete. That’s why there
exists an element x∗, such that x∗ = lim→∞ x

(x∗ x∗) ≤ (x∗x) + (x x
∗)

≤ (x∗x) + (x−1 x
∗)

≤ (x∗x) + (x−1x
∗)

→∞−→ 0
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y x∗ = x∗

B) Unicity: We assume: ∃x∗ y∗ | x∗ 6= y∗ but x∗ = x∗ and y∗ = y∗ y

(x∗y∗) = (x∗ y∗) ≤ (x∗y∗)

=⇒  ≥ 1 : 

C) Error estimations:

a posteriori: use (∗) with  = − 1 and →∞
a priori: use (∗) with  = 0 and →∞

Example 1.34 Application of the BANACH FPT to the integral equation

x() = 

Z 



 ( x())+ ();  ≤  ≤ ;  ∈ R (+)

in compliance with the conditions:

1)  : [ ]× [ ]× R→ R is continuous,
2)  is continuous; |(  )| ≤1 ∀  ∈ [ ]  ∈ R
3)  : [ ]→ R is continuous
4)  ∈ R such that: (− )||1 =   1

Theorem 1.10 If the conditions 1) to 4) are satisfied, then the integral equation (+)

admits a unique solution ∗() ∈ [ ]

Proof. By using the integral operator

(x)() = 

Z 



 ( x())+ ();  ≤  ≤ 

the integral equation (+) can be written in the form of a fixpoint equation

x() = (x)();  ≤  ≤ 

A)

x ∈ [ ]
1) 3)
=⇒ (x)() ∈ [ ]

y  : [ ]→ [ ]

B) By the Mean Value Theorem of differential calculus we get

∀  ∈ [ ] ∧ 1 2 ∈ R ∃ ∈ R |

| (  1)−  (  2)| = |(  )| |1 − 2|
2)

≤1 |1 − 2| (∗)
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This implies

((x1)() (x2)()) = max
≤≤

|(x1)()− (x2)()|

= max
≤≤

||
¯̄̄̄Z 



( ( x1())−  ( x2())) 

¯̄̄̄
 ≤ || max

≤≤
|− | · | ( x1())−  ( x2())|

 (∗)
≤ |||− |1 |x1()− x2()|

≤ |||− |1 max
≤≤

|x1()− x2()|
= (x1()x2())

Condition 4) delivers   1 and therefore the operator  is contractive.

Notation 1.13 The corresponding iteration method is:

x+1() = 

Z 



 ( x())+ ();  ≤  ≤ ;  = 0 1 2 

It converges, for example with 0 = 1 to the unique solution because of the BANACH

FPT.

Notation 1.14 A special case, in this example, is the case of linear integral equations:

 (  ()) = ( )(); with a continuous function ( ) : [ ]× [ ]→ R

Example 1.35 Given the linear integral equation with ( ) = 

x () = 

=1Z
=0

x () + 1 for 0 ≤  ≤ 1 ()

That means the functions () ≡ 1 F ( x ()) = x () and F ( ) =  are

continuous in their domains.

max
0 ≤  ≤ 1

| F ( ) |= 1 =1

Let  be a real number such that : (− ) ||1 = ||  1 Then the conditions of the
theorem above are fulfilled for the integral equation () with  = || This means that in
the case of ||  1 the equation () has a unique solution x∗ () ∈ C[0 1]
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By successive approximation with x0 () ≡ 1 in [0 1] we get the following sequence of
approximate solutions x ():

x+1 () = 

1Z
0

x () + 1 for 0 ≤  ≤ 1 and  = 0 1 2  

x1 () =  

1Z
0

 + 1 =


2
+ 1

x2 () =  

1Z
0

µ


2
2 + 

¶
+ 1 =

 

2

µ


3
+ 1

¶
+ 1

x3 () =  

1Z
0

∙


2

µ


3
+ 1

¶
2 + 

¸
+ 1 =

 

2

µ
2

32
+



3
+ 1

¶
+ 1

−−−−−−−−−−−−−−−−−−−−−−−−−

x+1 () =  

1Z
0

 x () + 1 =
 

2

X
=0

µ


3

¶

+ 1

=

Ã
 

2

1

1− 
3

!
+ 1

→ 3

2

µ


3− 

¶
+ 1 = x∗ () for →∞

x∗ () is the solution of () for every ||  1.
Application to an initial value problem (IVP)

Given the IVP:

x0 () = f (x ()) |− 0| ≤  (∗)
x (0) = x0

We search x () ∈ A with

A ⊂ X = C (0 −  0 + )

x () differentiable

A =

½
x () ∈ X

¯̄̄̄
max
|−0|≤ 

|x ()− x0| ≤ 

¾

 � � � ��

�



� � 	 


� � � 


�

� � 	 ��� � � �

�

�

�

���
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We transform the IVP in to an equivalent integral equation:

x () = x0 +

Z
0

f (x ())  |− 0| ≤  x ∈ A

With the integral operator T : A→ X given by

Tx () = x0 +

Z
0

f (x ())  |− 0| ≤ 

we get the fixpoint equation x () = Tx () 

Theorem 1.11 (PICARD-LINDELÖF)

1. Let f : S→ R and its partial derivative f =
f

x
(x) : S→ R be continuous on

S:

S =
©
(x) ∈ R2 | |− 0| ≤ ; |x− x0| ≤ 

ª
2. Let f and f be bounded on S:

max
(x) ∈ S

|f (x)| = max
(x) ∈ S

|f (x)| =1

Suppose

 ≤  and 1 =   1

Then the IVP (∗) has a unique solution
x∗ () ∈ A ⊂ C (0 −  0 + )

The sequence of approximate solutions x () calculated by successive approxima-

tion

x+1 () = x0 +

Z
0

f (x ())  |− 0| ≤ 

or x+1 () = Tx ()  = 0 1 2 

tends to x∗ () as n tends to ∞ for every x0 () ∈ A  i.e. x ()
→∞→ x∗ () 

For example take x0 () ≡ x0 for |− 0| ≤  as a starting point.
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Proof:

We have to show, thatT is contractive on the complete metric spaceX = C (− 0 + 0)

under the assumptions 1. and 2. The BANACH Fixed Point theorem then implies the

theorem wich we require.

a) We verify: T : A→ A

∀ x () ∈ A we have¯̄̄̄
¯̄

Z
0

f (x ()) 

¯̄̄̄
¯̄ ≤ |− 0| max

(x) ∈ S
|f (x)| ≤  ≤ 

with |− 0| ≤ 

Because Tx is continuous for every x ∈ A we get

X (Txx0) = max
|−0|≤ 

¯̄̄̄
¯̄

Z
0

f (x ()) 

¯̄̄̄
¯̄ ≤ 

and therefore Tx () ∈ A
b) The mean value theorem of the differential calculus implies

|f (x1)− f (x2)| = |f ( ξ)| |x1 − x2| ≤1 |x1 − x2| ∀ (x1) ∈ S ∧ ∀ (x2) ∈ S

Thus

X (Tx1Tx2) = max
|−0|≤ 

¯̄̄̄
¯̄

Z
0

[f (x1 ())− f (x2 ())] 
¯̄̄̄
¯̄

≤ 1 max
|−0|≤ 

|x1 ()− x2 ()|
=  · X (x1x2)

a) and b) together imply that T is contractive.

Example 1.36 Given the IVP

x0 () =  x () with x (0) = x0 = 1 (∗∗)

The equivalent integral equation to (∗∗) is the following:

x () = 1 +

Z
0

 x () 
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With 0 = 0 and x0 = 1 we get: S = {(x) ∈ R2 | || ≤ ; |x−1| ≤ } 
and with f (x) = x , f () =  we have:

max
(x) ∈ S

|f (x)| ≤  ( + 1) = max
(x) ∈ S

|f (x)| =  =1

The conditions of the theorem above are valid , if

 = 2 ( + 1) ≤  and 1 = 2 =   1

(We used |x| ≤ +1.) This means that in the case of   1 the IVP (∗∗) has a unique
solution x∗ () ∈ C (− )  Given  then  has to be chosen such that  ≥ 2 (1− 2) 

By successive approximation with x0 () ≡ 1 in [− ] we get the following sequence of
approximate solutions x ():

x1 () = 1 +

Z
0

  = 1 +
2

2

x2 () = 1 +

Z
0



µ
1 +

2

2

¶
 = 1 +

2

2
+
1

2

µ
2

2

¶2

x3 () = 1 +

Z
0

 x2 ()  = 1 +
2

2
+
1

2!

µ
2

2

¶2
+
1

3!

µ
2

2

¶3
−−−−−−−−−−−−−−−−−−−−−−−−−

x+1 () = 1 +

Z
0

 x ()  =

+1X
=0

1

!

µ
2

2

¶

→ exp

µ
2

2

¶
= x∗ () for (→∞) 

x∗ () is the solution of (∗∗) ∀  ∈ R.



2 Linear Normed Spaces

The simplest one of the abstract topological spaces is the metric space, about which

we spoke earlier. In a metric space you can do analysis because the metric is a distance

function between the elements. But you can’t compare the elements themselves. Thus

you can’t order the elements and so you don’t have an algebraic structure. That’s why

you can’t calculate in a metric space. But we need to be able to do all these things.

First we take the vector space V3 as a model:

• The connection between V3 and R3 is the unique mapping  :

(xy) = v =

⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ 1
2
3

⎞⎠−
⎛⎝ 1

2
3

⎞⎠ 

which assigns every pair xy ∈ R3 to a vector v ∈ V3: (R3V3 ) is an affine
space.

• The starting point of our consideration is the metric space R3 with

(xy) =
p
(1 − 1)2 + (2 − 2)2 + (3 − 3)2

=

q
21 + 22 + 23

= kvk 

such that (xy) is the length of the vector v: This is an Euclidian Space.

• The connection between V3 and R3 is the mapping  :

(xy) = v =

⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ 1
2
3

⎞⎠−
⎛⎝ 1

2
3

⎞⎠ 

which attaches every pair xy ∈ R3 to a vector v ∈ V3. We say (R3V3 ) is an
affine space.

• V3 is a linear space, arithmetic operations between vectors are defined.

The generalisation of the vector space V3 is a space with arbitrary mathematical objects
which has a connection to a corresponding metric space. We obtain linear normed spaces

where you can measure and calculate.

31
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2.1 Linear Spaces

Now we recall some facts about linear spaces from the Linear Algebra:

Definition 2.1 A vector space over a field K ( K = R or K = C ) is a nonempty set X
together with two binary operations that satisfy the eight axioms listed below. (Elements

of X are called vectors. Elements of K are called scalars.)

(A) The first operation, addition, takes any two elements x ∈ X y ∈ X and assigns
to them a third, unique element which is commonly written as x + y ∈ X and
called the sum of these two elements.

(M) The second operation takes any scalar  ∈ K and any vector x ∈ X and gives
another unique element x ∈ X. The multiplication is called the scalar multi-
plication of x by .

To qualify as a vector space, the set X and the operations of addition and scalar

multiplication must adhere to a number of requirements called the

Axioms of the linear space.

Let x y and z be arbitrary vectors in X, and  and  be scalars in K.

(A1) x+ (y+ z) = (x+ y) + z (Associativity of addition)

(A2) x+ y = y+ x (Commutativity of addition)

(A3) There exists a unique element O ∈ X such that x+O = x ∀x ∈ X
(zeroidentity element of addition)

(A4) For every x ∈ X, there exists a unique element (−x) ∈ X such that x+(−x) = O
(Inverse element of addition )

(M1) (+ )x = x+ x (Distributivity of scalar multiplication

with respect to field addition)

(M2) (x+ y) = x+ y (Distributivity of scalar multiplication

with respect to vector addition)

(M3) ()x = (x) (Compatibility of scalar multiplication

with field multiplication)

(M4) 1x = x; (1 ∈ K, Identity element of scalar multiplication)

Notation 2.1 If K = R (K = C) then we get a real (complex) linear space.
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Notation 2.2 These axioms generalise properties of the vectors introduced in the be-

ginning of this chapter.

Example 2.1 V : vector space analogous to R

Example 2.2 Space of all polynomials P = {P()| ∈ N  ∈ R (or. C)}:
P() = 0 + 1+ 2

2 + + 
;  ∈ R (or  ∈ C) =0 1  

Addition corresponds to the standard addition of polynomials, scalar multiplcation cor-

responds to the multiplication of a polynomial by a real or complex number. There exists

a connection between the polynomials P() and the vectors of the coefficients of the

polynomial:

⎛⎜⎝ 0
...



⎞⎟⎠ ∈ V+1

Example 2.3 x()y() ∈ [ ];  ∈ K= C :
Addition: (x+ y)() = x() + y()

Multiplication by a scalar: (x)() = x()

Zero Element: 0() ≡ 0 ∀ ∈ [ ]
Inverse element: −x()
Example 2.4 Space  of all real or complex number sequences x = {}∞=1
with

P∞
=1 || ∞; 1 ≤  ∞  ∈ K = C+ :

Addition: x+ y = { + }∞=1
Multiplication by a scalar: x = {}∞=1
Because of X∞

=1
|| = ||

X∞
=1
|| ∞

and the Minkowski inequality³X∞
=1
| + |

´1
≤
³X∞

=1
||

´1
+
³X∞

=1
||

´1
∞

we get x+ y ∈  and x ∈ 
Zero Element: 0 = {0}∞=1
Inverse element: −x ={−}∞=1
Example 2.5 X = R+ = (0∞) with K = R:
Addition: x+ y =  · 
Multiplication by a scalar: x = 

Zero element: 0 = 1 ∈ R
Inverse element: x+−x =1 corresponds to  · 1


= 1 y −x = 1



Homework: Test the axioms A1 to M4 of the linear space.
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Now we adopt several definitions from the linear algebra:

Definition 2.2 Let U be a subset of X. Then U is a subspace if and ony if it satisfies
the following conditions:

a) If x and y are elements of U, then the sum x+ y is an element of U.
b) If x is an element of U and  is a scalar from K, then the scalar product x is an
element of U.

Conclusion 2.1 U itself is a linear space over the field K

Definition 2.3 Let U be a subspace of X and 0 ∈ X then

 = {x0 + y | y ∈ U} ≡ x0 +U

is called linear manifold in X

Definition 2.4 Let A be a subset  ⊂ X The set of all finite linear combinations of
elements of 

 =

(
X
=1

x | x ∈   ∈ K  ∈ N
)

is called the linear span (linear cover) of 

Definition 2.5 Let U and V be subspaces of X, then

U+V = (U ∪V)

is called the sum of U and V Additionally, if U ∩V = {O} 
then U+V is called the direct sum U⊕V Every z ∈ U⊕V has a unique representation
in the form z = x+ y with x ∈ U and y ∈ V.

Definition 2.6 If X = U ⊕ V, then the subspaces U ⊂ X and V ⊂ X are called

complementary.

Definition 2.7 The set {x1x2 x} ⊂ X is called linearly independent, if
X
=1

x = 0⇐⇒1 = 2 =  =  = 0

Definition 2.8 The set  ⊂ X is called linearly independent, if every finite subset
of  is linearly independent.
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Definition 2.9 A linearly independent subset  ⊂ X with X =  is called a

basis in X

Definition 2.10 If there exists a basis of X with || =  then every basis of X
consists of  elements: dimX =  If there is no finite  then X is called infinitely
dimensional.

Definition 2.11 Let X and Y be linear spaces over K. X and Y are said to be linear
isomorphic, if there exists a bijection  : X→ Y with the property

(x+ y) = (x) + (y) ∀xy ∈ X;   ∈ K

Example 2.6 Dimension of P :

0 + 1+ 2
2 + + 

 = 0 ⇔  = 0;  = 0 1 2  

because a polynomial has exactly  complex roots (Fundamental theorem of linear alge-

bra)

y Basis of P = {1  2  } y dim(P) = + 1

Example 2.7 [ ] :

 =
©
1xx2 x

ª ⊂ [ ];  ∈ N
Any finite linear combination of elements of  is a polynomial. y B is linear indepen-

dent.

Weierstrass approximation theorem: Any continuous function can be approximated by

polynomials in arbitrary accuracy.

y [ ] = () y  is a basis. y dim([ ]) =∞

Example 2.8  :

Basis: =

½
x = (0  0 1

 
 0 );  = 1 2 

¾
 is infinite dimensional.

2.2 Normed Space - BANACH Space

Definition 2.12 A (real) normed linear space (V kk) is a (real) linear space V
over the field K together with a function kk  V → R, called the norm, satisfying the
following 3 conditions for any xy ∈ V:

(I) kxk ≥ 0 ∧ kxk = 0 ⇐⇒ x = 0 (nonnegativity and nondegeneracy)
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(II) kxk = || kxk   ∈ K (multiplicativity)

(III) kx+ yk ≤ kxk+ kyk (triangle inequality)

kxk is called the norm of the element x.

Notation 2.3 In any linear normed space V you can introduce the canonical or

induced metric by (xy) = kx− yk ∀xy ∈ V. Therefore every linear normed
space is a metric space.

Notation 2.4 In linear normed spaces the metric properties are combined with alge-

braic structures. You can measure and calculate.

Notation 2.5 The revesal, that a linear metric space is a linear normed space, too, is

true only if you can find in X a metric (xy) which is homogeneous (uniform) and
invariant by translations:

(A) Invariance by Translations: (x+ zy + z) = (xy) ∀xy z ∈ X
(B) Homogeneity: (x y) = || (xy) ∀xy ∈ X  ∈ K

Then we set kxk = (x0) because

kxk = (x0) ≥ 0 ∧ kxk = (x0) = 0⇔ x = 0

kxk = (x0)
()
= ||(x0) = || kxk

kx+ yk = (x+ y0) = (x+ y−y+ y)
()
= (x−y)

≤ (x0) + (0−y)
()
= (x0) + (0y)

= (0) + (y0)

= kxk+ kyk

Notation 2.6 The norm is a continuous function which satisfies the inequality:

|kxk− kyk| ≤ kx− yk ∀xy ∈ V

Proof. )

kxk = kx− y + yk ≤ kx− yk+ kyk
kxk− kyk ≤ kx− yk
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)

kyk = ky− x+ xk ≤ ky− xk+ kxk
− kxk+ kyk ≤ kx− yk

Therefore we get

|kxk− kyk| ≤ kx− yk ∀xy ∈ V

Definition 2.13 A linear normed vector space V over the field K which is complete

with respect to the metric (xy) = kx− yk, induced by the norm, is called a BA-
NACH space.

Example 2.9 BANACH spaces are for example:

1. R with

kxk =

⎧⎪⎨⎪⎩
µ

P
=1

||
¶1

 1 ≤  ∞
max
1≤≤

||   = “∞”

2. : space of all bounded number sequences {}∞=1 with

kxk =
Ã ∞X

=1

||
!1

 1 ≤  ∞

3. ∞ : space of all bounded number sequences {}∞=1 with

kxk∞ = sup


||

4. [ ]: space of all continuous functions  : [ ]→ C with

kfk∞ = max
≤≤

|f()|

5. [ ]: space of all m-times continuously differentiable functions  : [ ]→ C
with

kfk∞ =
X
=0

max
≤≤

|f ()()|
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6. [ ]: space of all measurable functions  : [ ] → C whose absolute value

raised to the  power has a finite integral:Z 



|f()| ∞

with

kfk =
µZ 



|f()|
¶1

especially with  = 2.

Notation 2.7 STEFAN BANACH. (1892-1945, Pole, died from lung cancer)

His book "Theorie des Operations Linéaires"(1932) is the foundation of the fundamen-

tials of the function analysis in normed spaces.

2.3 Metric Properties of BANACH Spaces B

Definition 2.14 The set (x0) = {x ∈ B | kx− x0k  } is called an open ball
centered at x0 ∈  with the radius 

Convergence in the BANACH space B:

• Let {x}∞=1 be a sequence in B.
lim→∞ x = x0 ⇐⇒ ∀  0 ∃0() | kx − x0k   ∀ ≥ 0

• {x}∞=1 is Cauchy in B, if
∀  0 ∃0() | kx − xk   ∀ ≥ 0

• Because of the completeness of the BANACH space, every Cauchy sequence tends
to a limit in the BANACH space.

• Convergence in normed spaces is called norm convergence.

• The set of all norm convergent sequences is linear:

lim→∞ x = x ∧ lim→∞ y = y implies lim→∞(x + y) = x+ y
lim→∞ x = x ∧ lim→∞  =  implies lim→∞ x = x

lim→∞ x = x implies lim→∞ kxk = kxk 

Definition 2.15 In a normed space V the norms kk1 and kk2 are said to be equivalent
if ∃ ∈ R   0  0 |  kxk1 ≤ kxk2 ≤ kxk1 ∀x ∈ V
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Example 2.10 Equivalent norms are in the space

a) V = R(or V = C) : x =

⎛⎜⎝ 1
...



⎞⎟⎠ ;  ∈ R(C)

kxk∞ = max
1≤≤

||; kxk1 =
P

=1

||; kxk2 =
s

P
=1

||2

A)

kxk∞ = max
1≤≤

|| ≤
X

=1

|| = kxk1 ≤ max
1≤≤

|| =  kxk∞

B)

kxk∞ = max
1≤≤

|| ≤
vuut X

=1

||2 = kxk2 ≤
√
max
1≤≤

|| =
√
 kxk∞

C)

kxk1 ≤  kxk∞ ≤  kxk2 ≤ 
√
 kxk1

8

||x||  = 1

||x||

1

2
||x||   = 1

x1

x2

b) V =[ ] : kfk∞ = max
≤≤

|()|; kfk2 = max
≤≤

|−()|;   0
− is a strictly monotonic decreasing function. Therefore we get

min
≤≤

− kfk∞ = −max
≤≤

|f()| ≤ − · max
≤≤

|f()| ≤ max
≤≤

|−f()|
= kfk2 ≤ max

≤≤
− · max

≤≤
|f()| = max

≤≤
− kfk∞

Notation 2.8 In a finite dimensional normed space V all norms are equivalent.
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Notation 2.9 Every finite dimensional normed space V is a BANACH space.

Proof. Let {e1 e2 e} be a basis in   =⇒  =
P
=1

e ∀ ∈ V

We introduce kxk∞ = max
1≤≤

||. Any other norm is equivalent to kk∞.

Let {x =
P
=1

e}∞=1 ⊂ V be Cauchy in V. Thus

| − | ≤ kx − xk∞ ≤ kx − xk   ∀ ≥ 0()  = 1 2  

implies {}∞=1 is Cauchy in R and lim→∞  = 0 ∀.
y lim→∞ x = x0 =

P
=1

0e ∈ V

Notation 2.10 The change to an equivalent norm has no influence to convergent se-

quences. Maybe you have a computational advantage.

Notation 2.11 The equivalence of norms is an equivalence relation, that means it is

reflexive, symmetric and transitive.

Series in Normed Spaces:

Definition 2.16 Let x1x2 x  be elements of a linear normed space V

s =

X
=1

x (partial sum)

By definition the series

∞X
=1

x converges to a limit s ∈ V if and only if the associated

sequence of partial sums {s}converges to s i.e.

s =

∞X
=1

x ⇐⇒ lim
→∞

s = s

s =

∞X
=1

x is called the sum of the series in V

Definition 2.17 The series

∞X
=1

x is called absolutely convergent, if the number

series

∞X
=1

kxk is convergent.
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Notation 2.12 In a BANACH space B every absolutely convergent series is convergent
and the following inequality is satisfied:°°°°°

∞X
=1

x

°°°°° ≤
∞X
=1

kxk 

Proof. The sequence of the partial sums e = ∞X
=1

kxk of the absolutly convergent
series is Cauchy. This implies

k − k =

°°°°°
X

=+1

x

°°°°° ≤
X

=+1

kxk   ∀ ≥ 0()

=⇒ ∃  ∈ B | lim
→∞

 = 

Therefore we get °°°°°
X

=1

x

°°°°° ≤
X

=1

kxk ≤
∞X
=1

kxk 

lim
→∞

°°°°°
X

=1

x

°°°°° = kk =
°°°°°
∞X
=1

x

°°°°° ≤
∞X
=1

kxk

2.4 Linear Operators

The consideration of linear problems in linear normed spaces makes sense because linear

operators use the linear structure of these spaces.

Definition 2.18 Let XY be linear normed spaces over the (same) field K. A mapping
A : X→ Y is called a linear operator if:

A(u+ v) = Au+Av ∀uv ∈ X
A(u) = u ∀ ∈ K ∧ ∀u ∈ X

Image space of A: (A) = {y ∈ Y | y = Ax; x ∈ X}
Null space (kernel) of A: (A) = {x ∈ X | Ax = 0}

Notation 2.13 (A) = {0} ⇐⇒ A : X→ Y is injective.
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Definition 2.19 The linear operator A : X → Y is called bounded if there exists

some finite positive constant  ∈ R such that kAxk ≤  kxk ∀x ∈ X
Definition 2.20 The number

kAk = inf { ∈ R |kAuk ≤  kuk ∀u ∈ X}
= sup

kuk=1
kAuk

is called the norm of the operator.

Notation 2.14 :

kAxk ≤ kAk kxk ∀ x ∈ X and

u =
x

kxk ∀ x 6= 0

implies

kAuk =
kAxk
kxk ≤ kAk

kxk
kxk = kAk kuk = kAk and

kAk = sup
kuk=1

kAuk

Notation 2.15 You can find linear operators A : X → Y in linear equations of the
form Ax = y (x ∈ X y ∈ Y). For example the operator A can be

− a system of algebraic equations

− an integral equation or

− an ordinary or partial differential equation with initial conditions or boundary values.

Notation 2.16 Therefore, it is possible to transfer the properties of solutions of sys-

tems of linear equations to solutions of linear operator equations.

Example 2.11 Let X = R have the basis e1  e Therefore, every element x ∈ X
can be described as x =

P
=1

e

Furthermore Y = R has the basis f1  f and so y =
P
=1

f ∀y ∈ Y.

The operator A : X→ Y is defined by:

Ae =

X
=1

f ∈ Y  = 1   (∗) and

Ax =

X
=1

Ae (∗∗) ∀ x ∈ X

=

X
=1



X
=1

f =

X
=1

Ã
X

=1



!
f =

X
=1

f = y
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Therefore we get
X

=1

 = 

y The definition (∗) (∗∗) of the operator is equivalent to the matrix equation  =  :⎛⎜⎝ 11 · · · 1
...

...

1 · · · 

⎞⎟⎠
⎛⎜⎝ 1

...



⎞⎟⎠ =

⎛⎜⎝ 1
...



⎞⎟⎠⇔ x = y

in the basis {e} of X and in the basis {f} of Y. If you have a look at (∗∗) or the
matrix then you will see that the operator  is obviously linear. Now we define the

operator norms in X and Y by

kxk∞ = max
1≤≤

||  kyk∞ = max
1≤≤

||

y

kxk∞ = max
1≤≤

|| = max
1≤≤

¯̄̄̄
¯

X
=1



¯̄̄̄
¯

≤ max
1≤≤

X
=1

|| · max
1≤≤

|| =
Ã
max
1≤≤

X
=1

||
!
kxk∞ ≤  kxk∞

This means  is bounded.

Example 2.12 X =
½
f () ∈ C [ ]

¯̄̄̄
∃ f


∈ C [ ]

¾
; Y = C [ ] 

We introduce the differential operator D : X→ Y. It is linear because:

D (f + g) = D (f) + D (g) ∀f g ∈ X and   ∈ R

For example, we obtain with f =  () = sin ;  ∈ [ ] : D (f) = 


= cos 

In X ⊂ C [ ] and Y = C [ ] we introduce the norm kfk = max
≤  ≤ 

|  ()|. Then D
is an unbounded operator:

Choose f() = sin() =⇒ f 0() =  cos() ∧ kfk = 1

=⇒ f =  cos()

=⇒ kfk =  kfk ;  = 1 2 
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Example 2.13 X = Y = C [ ] ; x = x () ∈ C [ ] and kxk∞ = max
≤  ≤ 

|x ()|
Consider the integral operator:

(Ax) () =

Z


 ( )x () ; x ∈ C [ ]

with the continuous integral kernel function  ( ) : [ ]× [ ]→ R
The operator A : C [ ]→ C [ ] is linear and bounded.Linearity is obviuos. (home-

work)

kAxk = max
≤≤

¯̄̄̄Z 



( )x()

¯̄̄̄
≤ max

≤≤

Z 



|( )| · max
≤≤

|x()|
≤ (− ) max

≤≤
|( )| · kxk ≤ (− ) kxk

kAk ≤ (− )

Theorem 2.1 The linear operator A : X → Y is continuous if and only if it is

bounded.

Proof. I) Let A be continuous on X =⇒ A is continuous at x0 = 0.

Proof by contradiction: We assume that A is unbounded. =⇒ ∃ {x}∞=1 ⊂ X such
that

x 6= 0 ∧ kAxk   kxk ;  ∈ N
We set

u =
x

 kxk ∈ X

kAuk =
kxk
 kxk  1  ∈ N

On the other hand

kuk = 1



→∞→ 0 y lim
→∞

u = 0

But the continuity of A at x0 = 0 implies

Au
→∞→ A(0) = A(x− x) = 0 contradiction

y A is bounded.

II) Precondition: A is bounded at an arbitrary x0 ∈ X. If kx− x0k  

=  then

kAx−Ax0k = kA(x− x0)k ≤  kx− x0k  



= 

Therefore A is continuous at x0.
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Definition 2.21 A linear continuous operator A : X→ Y is called an isomorphism
if it is bijective and if A−1 is continuous. That means: An isomorphism is a linear

homeomorphism. Moreover if kAxk = kxk ∀x ∈ X is satisfied then A is called iso-

metric. Normed spaces which are connected by an (isometric) isomorphism are called

(isometricly) isomorph.

Definition 2.22 The sum T + S of the linear operators T and S is defined by the

equation (T+ S)x = Tx+ Sx ∀x ∈ X, the product of the operators T by  ∈ R
or  ∈ C is defined by (T)x = (Tx) ∀x ∈ X.

Definition 2.23 The collection L(XY) of all linear bounded operators
A : X → Y with the sum and the product defined above is called the space of the

linear bounded operators L(XY)

Notation 2.17 The result of the sum and the product defined above is an element of

L(XY).

Notation 2.18 If we introduce the operator norm kAk in L(XY) for every
A ∈ L(XY) then L(XY) is a linear normed space.

Example 2.14 (for the space L (XY) )
X = R with kxk = max

1≤  ≤ 
|| x = (1  )



Y = R with kyk = max
1≤  ≤ 

|| y = (1  )


Every linear operator A : R → R of L (RR) can be represented by a matrix

A =

⎛⎝ 11  1
  

1  

⎞⎠ 

The sum of two ×  matrices and the product of a ×  matrix with an element of

R or C are the same as the arithmetic operations between linear operators.=⇒ There

exists a linear isomorphism between the set of all ×  matrices and L (RR) 

kAuk = max
1≤  ≤ 

¯̄̄̄
¯

X
=1



¯̄̄̄
¯ ≤ max

1≤  ≤ 

X
=1

|| max
1≤  ≤ 

|| (+)

implies

kAk ≤ max
1≤  ≤ 

X
=1

|| 
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With max
1≤  ≤ 

P
=1

|| =
P

=1

|| and u = (1 1  ) ∈ R, such that  =  ()

we get kuk = 1 and therefore
 ·  () =  ·  = ||

kAuk = max
1≤  ≤ 

¯̄̄̄
¯

X
=1



¯̄̄̄
¯ =

Ã
max

1≤  ≤ 

X
=1

||
!
kuk 

Thus there exists an element u ∈ R such that the inequality (+) is an equation for

u = u:

kAk = max
1≤  ≤ 

X
=1

|| 

Only if  =  the operators of L (RR) can be invertible. In this case we get:

L (RR) = {A ∈ L (RR) | det (A) 6= 0} 
Theorem 2.2 If the image space Y of a linear operator is a BANACH space, then

L (XY) is a BANACH space, too.

Proof. Let {}∞=1 be a Cauchy sequence in L(XY) y
kAn −Ak   ∀ ≥ 0()

This implies

kAx−Axk ≤ kA −Ak kxk   kxk (∗) ∀ ≥ 0() ∀x ∈ X
=⇒ {Ax}∞=1 is Cauchy in Y

Y is a Banach space =⇒
∃ Ax = lim

→∞
Ax ∈ Y ∀x ∈ X

y
A(r+ s) = Ar+ As

↓ →∞ ↓
A(r+ s) = Ar + As

⎫⎬⎭A is linear

y kAxk ≤ kAx−Axk+ kAxk ≤ (+ kAk) kxk ∀ ≥ 0() ∀x ∈ X
y A is bounded

(∗) implies as →∞
kAx−Axk ≤  kxk ∀ ≥ 0() ∀x ∈ X
kA −Ak ≤  ∀ ≥ 0() ∀x ∈ X

y lim
→∞

A = A ∈ L(XY)
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Definition 2.24 The sequence {A}∞=1 ⊂ L(XY) is called norm convergent (strong-

ly convergent) with the limit A ∈ L(XY) if lim→∞ kAx−Axk = 0 ∀x ∈ X is

satisfied.We write:

A
→∞→ A  lim

→∞
A = A

Notation 2.19 Strong convergence implies the pointwise convergence.

Definition 2.25 Let X, Y, Z be linear spaces and let T : X → Y; S : Y → Z be
linear operators. Then the product ST of the operators is defined by

(ST)x = S(Tx) ∀x ∈ X

Definition 2.26 Let T : X→ Y be a linear operator. If there exists a linear operator
S : Y→ X such that :
ST = IX ∧ TS = IY; with IX IY identity maps from X to X or Y to Y then S is
the inverse Operator of T : S = T−1
The collection of all invertible operators  ∈ L(XY) is called L(XY) .

Theorem 2.3 Given an operator T. If the inverse operator T−1 exists then it is uni-
que.

Proof. Assumption: ∃ T−11 ∧ T−12 | T−11 6= T−12

TT−11 = IY ∧ TT−12 = IX

T(T−11 −T−12 ) = 0 y

T−11 = T−12 Contradiction

Notation 2.20 L(XY) is open in L(XY) with respect to the operator norm.
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3 HILBERT Spaces

In the space R3 an inner product is defined:
(xy) = xy = 11 + 22 + 33 ∀x = (1 2 3) y = (1 2 3) ∈ R3
Furthermore we have kxk =

p
(xx)

The following condition for the inner product leads us to the orthgonality of two ele-

ments: xy ∈ R3 are orthogonal if and only if (xy) = 0 Therefore we can define the
position of any two elements of the space.

Orthogonality is the background for the solution of the following approximation

problem:

Given:

x ∈ R3 and a subspace U ⊂ R3

We look for an element

x0 ∈ U with kx− x0k = min
y ∈ U

kx− yk

0
x

0 x

x
0

x-

U

x0 is the best approximation of x with respect to the subspace U x0 satisfies the

condition

(x− x0y) = 0 ∀y ∈ U

Moreover using this we can specify the definition of a basis: If you take an orthonormal

system (ONS) in R3, for example {e1 e2 e3 | (e e) = } then you can describe an
element x ∈ R3 by x =P3

=1(x e)e.

We want to generalise these facts in order to abstract this concept to infinite dimensio-

nal spaces. If an abstract space with an inner product is complete then you can represent

its elements by FOURIER series. This is the basis of numerics in such spaces. That’s

why we are looking first for an inner product space.

Definition 3.1 An inner product space (H ( )) or pre-HILBERT space is a linear
space H over the field K together with a function ( ) : H×H→ K, called the inner
product which satisfies the following conditions:

1. (xx) ≥ 0 ∧ (xx) = 0⇔ x = 0 (nonnegativity and nondegeneracy)

49
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2. (xy) = (yx) (Hermitian symmetry)

3. (x+ y z) = (x z) + (y z) ∀xy z ∈ H; ∈K (linearity in the first

argument).

Theorem 3.1 Every pre-HILBERT space is a normed space with the norm

kxk =
p
(xx) ∀x ∈ H . (Proof see below)

Example 3.1 H =l2 : x = {1 2 } ∈ H y = {1 2 } ∈ H

(xy) =

∞X
=1

; kxk =
Ã ∞X

=1

||2
!05

Example 3.2 H =C[ ] : f g ∈ H

(f g) =

Z 



f()g(); kfk =
µZ 



|f |2
¶05

Properties of the inner product:

1. (u v) = (uv) ∀uv ∈ H  ∈ K

2. (uv+w) = (uv) + (uw) ∀uvw ∈ H

3. |(uv)| ≤ kuk · kvk ∀uv ∈ H SCHWARZ’s Inequality

Proof. 1.:

(u v) = (vu) = (uv) ∀uv ∈ H  ∈ K

2.:

(uv+w) = (v +wu) = (vu) + (wu)

= (uv) + (uw) ∀uvw ∈ H

3.:

0 ≤ (u−vu−v) ∀uv ∈ H  ∈ K
= (uu)− (vu)− (uv) + (vv)
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We choose  =
(uv)

(vv)
and substitute:

0 ≤ (uv)− (uv)
(vv)

(vu)− (uv)
(vv)

(uv) +
(uv)(uv)

(vv)(vv)
(vv)

= kuk2 − |(uv)|
2

kvk2 y

|(uv)| ≤ kuk · kvk

Proof. of theorem 3.1:

The norm properties 1 and 2 of kxk =
p
(xx) are obvious. We prove only property 3:

kx+ yk2 = (x+ yx+ y)

= (xx)+(xy)+(yx)+(yy)

= kxk2 + kyk2+(xy)+(xy)
= kxk2 + kyk2+2Re(xy)
≤ kxk2 + kyk2+2|(xy)|
≤ kxk2 + kyk2+2 kxk kyk ()

= (kxk+ kyk)2

Theorem 3.2 The inner product in a pre-HILBERT space is continuous, i.e.

lim→∞ x = x and lim→∞ y = y imply lim→∞(xy) = (xy)

Proof.

0 ≤ |(xy)−(xy)|
= |(xy)− (xny)+(xny)−(xy)|
≤ |(xy)− (xny)|+ |(xny)−(xy)|
≤ kx− xnk kyk+ kxk ky− yk = 

 is a null sequence because of lim→∞(x− xn) = lim→∞(y− yn) = 0
and lim→∞ xn = x

Definition 3.2 A HILBERT space is a complete pre-HILBERT space with respect

to the metric (xy) = kx− yk, induced by the norm kxk =
p
(xx).

Notation 3.1 Every HILBERT space is a BANACH space. A BANACH space is a

HILBERT space if and only if the norm of the BANACH space satisfies the parallelo-

gramm idendity

kx− yk2 + kx+ yk2 = 2(kxk2 + kyk2)
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Notation 3.2 Therefore all definitions, theorems and facts about linear normed spaces

are hold in HILBERT spaces.

Example 3.3 H = C (or H = R) :

(xy) = x·y; kxk = |x| ∀x ∈ H
Example 3.4 H = C (or H = R) :

(xy) =

X
=1

; kxk =
Ã

X
=1

||2
!05

∀xy ∈ H

Example 3.5 →∞ : H = l2 dim l2 =∞ :

(xy) =

∞X
=1

; kxk =
Ã ∞X

=1

||2
!05

∀xy ∈ H

(space of square-summable sequences)

Example 3.6 H =L2[ ] : −∞     ∞
is the set of all measurable functions f : [ ]→ C such that ()

R 

|f()|2  ∞

(f g) =

Z 



f()g() ∀f g ∈ H

But: [ ] with the inner product (f g) =
R 

f()g() is not a HILBERT space!

[ ] with this inner product is a dense subspace in L2[ ].

3.1 FOURIER Series in HILBERT Spaces

Definition 3.3 Let H be a HILBERT space. The two elements uv ∈ H are ortho-

gonal (u ⊥ v) if (uv) = 0
Definition 3.4 Let H be a HILBERT space. A system {e}∞=1 is called an orthonor-
mal system (ONS) if (e e) =  =

½
1  = 

0  6= 


The ONS is called closed or complete, if 


{e} = H

Conclusion 3.1 ∀ u ∈ H ,∀  0 ∃ ∈ R ∧ ∃0() |°°°°°u−
X
=1

e

°°°°°   ∀  0
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Definition 3.5 A HILBERT space H is called separable, if H has a countable subset
 = {u1u2 } which is dense in H, i.e.  = H.

Theorem 3.3 In a separable HILBERT space H, there exists at least one complete
ONS (and the contrary is true, too).

Proof. A) First we construct a basis of H:
Let  = {|  = 1 2 } be dense in H y  = H
First step: We delete all linearly dependent elements of  and get

 = {|  = 1 2 } such that
() = () = H.

Second step: We orthogonalise and normalise the elements of  by the method of

Erhard Schmidt and prove it by induction.

Beginning of induction:

e1 =
u1

ku1k ; ke1k = 1

ee2 = u2 − (u2 e1)e1; e2 =
ee2
kee2k ; ke2k = 1

(ee2 e1) = (u2 − (u2 e1)e1 e1)
= (u2 e1)− (u2 e1)(e1 e1) = 0

We assume

ee = u − −1X
=1

(u e)e; e =
ee
keek  (ee e) = (e e) = 0;  = 1   − 1 (∗)

Step of induction:

ee+1 = u+1 −
X
=1

(u+1 e)e; e+1 =
ee+1
kee+1k ; ke+1k = 1

(ee+1 e) =

Ã
u+1 −

X
=1

(u+1 e)e e

!
;  = 1 2  

= (u+1 e)−
X
=1

(u+1 e)(e e)

= (u+1 e)− (u+1 e) = 0 because of (e e) =  (see (∗))
y e+1 and e are orthogonal and normalised for all   

B) {e} is dense in H because we deleted the linearly dependent elements only.
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Notation 3.3 A HILBERT space with a complete ONS is separable. (= contrary to

the theorem above)

Examples for ONS and separable HILBERT spaces

Example 3.7 H = 2 :

 = {x = {1 2   0 0} |  ∈ N;  ∈ Q;  = 1 2  }
Example 3.8 H = L2[ ] :

 = {P() =
X

=0


 |  ∈ N;  ∈ Q;  = 0 1  }

Example 3.9 H = L2[− ] : ONS:

e0() =
1√
2
; e2−1() =

1√

cos(); e2() =

1√

sin();  = 1 2 

f ∈ L2[− ] y f() =
0

2
+

∞X
=1

[ cos() +  sin()]

 =
1√


Z
−

f() cos();  =
1√


Z
−

f() sin()

Example 3.10 Method of orthonormalisation by E. Schmidt

H = 2(−1 1) :  = {f() = ;  = 0 1 2 };  = L2[−1 1]
The functions f() are linearly independent.

kf0()k =

sZ 1

−1
1 =

√
2

e1() =
f0()

kf0()k =
1√
2

ee2() = f1 − (f1 e1)e1 = −
µZ 1

−1

1√
2


¶
· 1√
2

= − 1
2

∙
2

2

¸1
−1
= − 1

2

∙
1

2
− 1
2

¸
= 

e2() =


kk =
p
( )

=
qR 1
−1 

2
=

q
1
3
[3]

1

−1

=
q

1
3
[1− (−1)]

=

r
3

2
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ee3() = f2 − (f2 e1)e1 − (f2 e2)e2

= 2 −
µ
2

1√
2

¶
· 1√
2
−
Ã
2

r
3

2


!
·
r
3

2


= 2 − 1
2

Z 1

−1
2−

r
3

2


Z 1

−1

r
3

2
3

= 2 − 1
2

∙
3

3

¸1
−1
−
r
3

2


r
3

2

∙
4

4

¸1
−1
= 2 − 1

3

e3() =
ee3()
kee3()k = 2 − 1

3³R 1
−1
¡
2 − 1

3

¢

´05 = (homework)

=

r
5

2

µ
3

2
2 − 1

2

¶

The resulting ONS is called LEGENDRE polynomials. The functions e can also be

given by

e =

r
2+ 1

2

1

(2)!!




(2 − 1);  = 0 1 2 

(2)!! = 2(2− 2)2

Notation 3.4 {e}∞=1 is a closed ( = complete) ONS in the HILBERT space H
⇐⇒ (u e) = 0 ∀ =⇒ u = 0

Notation 3.5 Every u ∈ H can be represented by u =P∞
=1 e

⇐⇒ the ONS {e}∞=1 is complete.

Theorem 3.4 Let H be a separable HILBERT space with the ONS {e}∞=1, u ∈ H,
s =

P

=1 e;  ∈ C Then we get:

1. ku− sk is minimal for  =  = (u e) ∀

2. lim→∞
P

=1 e = s ∈ H

3. The series
P∞

=1 ||2 converges and BESSEL’s inequality
P∞

=1 ||2 ≤ kuk2 is
satisfied.

4. If the ONS {e}∞=1 is complete, then s = u and we get PARSEVAL’s identity:P∞
=1 ||2 = kuk2
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Proof. 1)

ku− sk2 =

Ã
u−

X
=1

eu−
X

=1

e

!

= kuk2 −
X
=1

(eu)−
X
=1

(u e)+

X
=1



= kuk2 +
X
=1

( −  −  + )−
X
=1



= kuk2 +
X
=1

| − |2 −
X
=1

||2

We find the minimum in the case  = . Then s =
P

=1 e =
P

=1(u e)e implies

0 ≤ ku− sk2 = kuk2 −
X
=1

|(u e)|2 Bessel’s idendity

3) y
∞X
=1

|(u e)|2 ≤ kuk2 Bessel’s inequality (∗)

Therefore ∞X
=1

|(u e)|2 =
∞X
=1

||2 is convergent

2) We show that {s =
P

=1 e}∞=1 is a Cauchy sequence.

ks − sk2 =

Ã
X

=+1

e

X
=+1

e

!

=

X
=+1

||2

The convergence of
P∞

=1 ||2 implies ks − sk2   for  ≥ 0()

H is complete y lim→∞s = s ∈ H
4) We verify that lim→∞s = u
{e} = H because of the completness of the ONS (= precondition )

y ∀  0 ∃ at least one v ∈ {e} | ku− vk   ∧ v =

X
=1

e ;  = ()
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By 1) we get

ku− sk2 = kuk2 −
X
=1

|(u e)|2 →∞−→ 0

y

kuk2 =
∞X
=1

||2

Definition 3.6 Let H be a HILBERT space with the ONS {e}∞=1, u ∈ H.
The series

P∞
=1(u e)e is called the FOURIER series of u with respect to the ONS

{e}∞=1, the numbers  = (u e) are called FOURIER coefficients.

Example 3.11 We know from doing analysis in the space H = L2[− ] :

f() =
0

2
+

∞X
=1

[ cos() +  sin()]

Example 3.12 H =L2[0  ] i.e.  : [0  ]→ C
A complete ONS is:

φ() =
1√

;  ∈ Z;  =

2



Then

f() =

∞X
−∞


;   =

1√


Z 

0

f()−

Problem: The following is known:

u ∈ H and {e}∞=1 is an ONS in H. This implies (u ) = ;
P∞

=1 ||2 ≤ kuk2  Is
the opposite correct, too? Does any number sequence with

P∞
=1 ||2  ∞ define an

element y ∈ H?

Theorem 3.5 RIESZ - FISCHER

Let {e}∞=1 be an ONS in the HILBERT space H and {}∞=1 be a number series withP∞
=1 ||2 ∞ =⇒ ∃v ∈ H | (v e) =  ∀ ∧ v =

P∞
=1 e

If {e}∞=1 is closed in H, then v is well defined.

Proof. 1)  =
P

=1 e is a Cauchy sequence (see proof of theorem 3.5)

H is complete y lim→∞s = v ∈ H y v =
P∞

=1 e y

(v e) = lim→∞

Ã
X
=1

e 

!
=  ∀
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2) Let {e}∞=1 be closed. We assume that

∃uv ∈ H | (u e) = (v e) ∀ ∧ u 6= v

z = u− v implies (z e) = 0 ∀ ∧ z 6= 0
Parseval’s identity implies

∞X
=1

|(z e)|2 = kzk2 = 0 y z = 0 contradiction

Summary:

1. Every element of a separable HILBERT space can be represented by a FOURIER

series:

u =

∞X
=1

e;  = (u e)

2. Every number sequence {}∞=1 with
P∞

=1 ||2  ∞ defines an element v of a

HILBERT space uniquely:

v =

∞X
=1

e

3.

s =

X
=1

e; with  = (u e)

is the best approximation of the element u with respect to the finite basis {e}=1
(see theorem 3.5)

3.2 Special HILBERT Spaces

3.2.1 The Space C(R)

Elements: Vectors x = (1 2 )
  ∈ C(R)

Arithmetic operations: addition and multiplication by numbers are known from

linear algebra.

Inner product/norm: (xy) =
P

=1  kxk =
qP

=1 ||2
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SCHWARTZ’s inequality: |(xy)| ≤ kxk kyk  i.e.¯̄̄̄
¯

X
=1



¯̄̄̄
¯ ≤

vuut X
=1

||2 ·
vuut X

=1

||2

Basis system: {e}=1 = {(0 0 e = 1 00)   = 1 2  }
{e}=1 is an ONS, {e}=1 = C dimC = 

Properties:

C is separable: If you calculate {e}=1 with rational coefficients then you get a
countable subset which is dense in C.

FOURIER series:

• x =P

=1(x e)e;  = (x e) ∀x ∈ C

• kxk2 =P

=1 ||2 : PARSEVAL’s Equation

• Every n-tuple {}=1 can be attached to an element x ∈ C (RIESZ-FISCHER

theorem).

Remarks:

1. other inner products can be defined:

for example, if  = ∗ : (xx) ≥ 0 ∀x 6= 0
y (xy) = (xy) is an inner product

y |(xy)| ≤ kxk kyk  i.e.¯̄̄̄
¯

X
=1



¯̄̄̄
¯
2

≤
X

=1

 ·
X
=1



2. An example of another finite dimensional HILBERT space is the following:

  = {X() | X() = 0 + 1+ 2
2 + + 

;  ∈ [ ]  ∈ C}
(X()Y()) =

R 

X()Y()

3.2.2 The space 2

Elements: number series x = {}∞=1 y = {}∞=1
with

P∞
=1 ||2 ∞;

P∞
=1 ||2 ∞;   ∈ C(R)

The elements are sequences: x ={1 2 } with the components 

Arithmetic operations: x+ y = {1 + 1 2 + 2 }
x ={1 2 };  ∈ C(R)
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Inner product/Norm:

(xy) =

∞X
=1

 kxk =
vuut ∞X

=1

||2

SCHWARTZ’s inequality: |(xy)| ≤ kxk kyk  i.e.¯̄̄̄
¯
∞X
=1



¯̄̄̄
¯ ≤

vuut ∞X
=1

||2 ·
vuut ∞X

=1

||2

(The convergence of the series
∞P
=1

 must be shown using a different method:

(||− ||)2 ≥ 0 implies ||2 − 2||||+ ||2 ≥ 0 and therefore 2|||| ≤ ||2 + ||2
y

¯̄̄̄ ∞P
=1



¯̄̄̄
≤

∞P
=1

|| ≤
∞P
=1

1
2
(||2 + ||2) ∞ )

Basis systems:

• ©e = {0  0  = 1 0 }ª∞=1 is an ONS.
• {e}∞=1 is closed.
• 2 is infinite-dimensional.

Properties: 2 is separable. (without proof)

FOURIER series:

• x =P∞
=1(x e)e;  = (x e) ∀x ∈ 2

• kxk2 =P∞
=1 ||2 : PARSEVAL’s Equation

Remarks about the space l ;  ≥ 1;  6= 2:
• Set of all number sequences x = {}∞=1 with

P∞
=1 || ∞

• normed by: kxk = 1


pP∞
=1 ||

• complete
• separable
• But l is not a HILBERT space because there isn’t any inner product with:
kxk =

p
(xx)
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3.2.3 The space L2( )

Elements: measurable functions f : ( )→ C, with ()

Z


|f()|2  ∞

These functions are called square-integrable.

Arithmetic operations: f() + g() and. f()  ∈ C are calculated pointwise

Inner product/Norm: (f g) = ()

Z


f()g() kfk2 = ()
Z



|f()|2 

SCHWARTZ’s inequality: |(f g)| ≤ kfk kgk  i.e.¯̄̄̄
¯̄()

Z


f()g()

¯̄̄̄
¯̄
2

≤
⎛⎝() Z



|f()|2 
⎞⎠ ·

⎛⎝() Z


|g()|2 
⎞⎠

Basis systems:

A) ( ) = (−1 1) : ee () = ;  = 0 1 2 

{ ee}∞=0 is linearly independent and complete in L2 (−1 1) 
Orthonormalising by SCHMIDT implies:

e () =

µ
2+ 1

2

¶12
L ()  = 0 1 2 

with the LEGENDRE polynomials

L () =
1

!2




¡
2 − 1¢

for example:

L0 () = 1 L1 () =  L2 () =
1

2

¡
32 − 1¢

L3 () =
1

2

¡
53 − 3¢  L4 () =

1

8

¡
354 − 302 + 3¢

B) ( ) = (− ) :
complete ONS:

ϕ0 () =
1√
2
, ϕ2−1 () =

1√

cos () , ϕ2 () =

1√

sin ()  = 1 2 
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Thus:

f () =
0

2
+

∞X
=1

[ cos () +  sin ()] ,

with  =
1



Z
−

f () cos ()   =
1



Z
−

f () sin () 

C) ( ) = (0 ) :

complete ONS I :

ϕ0 () =
1√

, ϕ () =

r
2


cos () ,  = 1 2 

complete ONS II :

ϕ () =

r
2


sin () ,  = 1 2 

D) ( ) = (0  ) :

complete ONS:

ϕ () =
1√

exp ()  = 0±1±2   =

2



Thus

f () =

∞X
=−∞

 exp () , with  =
1



Z
0

f () exp (−) 

Properties:

• The space L2( ) is infinite-dimensional.
Proof: Assume [ ] ⊂ ( ) with −∞     ∞ and

f () =

½
 for  ∈ [ ]
0 otherwise



then f ∈ L2( ) and the set {f0 ()   f ()} is linearly independent in L2 ( )
for any  ∈ N. Therefore dim (L2( )) =∞

• L2( ) is complete and separable. If ( ) is a finite interval then the set of
polynomials with rational coefficients is dense in L2( ). Every f() ∈ L2( )
can be approximated by such a polynomial with any accuracy.
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• The elements of L2( ) are classes of functions. f1() and f2() belong to the
same class if f1() = f2() almost everywhere over ( ), i.e. if f1() 6= f2() on a

set of measure zero or ()

Z


|f1()− f2()|  = 0

FOURIER series:

Using the basis systems B), C) and D) we get the common FOURIER series.

Remarks:

• about the space L :
The space L of all measurable functions f()  ≥ 1;  6= 2, whose absolute value
raised to the p-th power has a finite integral is not a HILBERT space. (For  6= 2
there doesn’ t exist an inner product such that kfk =

p
(f  f).) That means

()

Z 



|f()|  ∞; kfk = 1


s
()

Z 



|f()| 
These functions are called: “to the p power integrable functions”.

• The set C∗ [ ] of all continuous functions over [ ] with the inner product

(f g) =

Z


f () · g () for any f g ∈ C [ ]

is a pre-HILBERT space, but not a HILBERT space. But: C∗ [ ] with this inner
product is a dense subspace in L2 ( ).

• The reason for the definition of the inner product in the space L2 ( ) by LE-
BESGUE integrals is, that the definition by RIEMANN integrals leads only to

a pre-HILBERT space. The LEBESGUE integral is more general than the RIE-

MANN integral. For example, you need more stringent requirements for changing

integral and limit

lim
→∞

Z


f ()  =

Z


lim
→∞

f () 

in the RIEMANN integral than in the LEBESGUE integral.
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3.2.4 The space L2();  ⊆ R;  6= ∅;  measurable

Elements: all on  defined functions f : → R (or C) with real or complex values,
which are measurable, with

()
R


|f (x)|2  ∞ These functions are called square-integrable on .

Arithmetic operations:

f+g ∈ L2 () because (f+g) (x) = f (x)+g (x) x ∈ 

∀f g ∈ L2 () and ∀  ∈ R (or ∀  ∈ C)

Inner product/norm:

(f g) =

Z


f (x) g (x)  kfk2 =
vuutZ



|f (x)|2 

SCHWARTZ’s inequality: |(f g)| ≤ kfk kgk  i.e.¯̄̄̄
¯̄Z


f (x) g (x) 

¯̄̄̄
¯̄ ≤

vuutZ


|f (x)|2  ·
vuutZ



|g (x)|2 

Basis systems: H=L2 (−∞∞) : f () =  exp
¡−1

2
2
¢

 = 0 1 2 

{ f} is linear independent and complete in L2 (−∞∞) 
Orthonormalising by SCHMIDT implies:

ϕ () =
1



exp

µ
−1
2
2
¶
H ()  = 0 1 2 

with  =

q
2!
√


and the HERMITE polynomials

H () = (−1) exp
¡
2
¢ 



¡
exp

¡−2¢¢
for example:

H0 () = 1 H1 () = 2 H3 () = 4
2 − 2

Properties:

• L2 () is a separable HILBERT space.
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• The elements of L2 () are classes of functions like in the space L2 ( ).
• If  ⊂ R is open then dim (L2 ()) =∞

If  is open, then there exists a cube

C = {x = (1  ) ∈ R | −∞       ∞}

with  ⊂  We define

f (x) =

½
1 for x = (1 2  ) ∈ C
0 for x ∈ R \ G



This implies that f (x) ∈ L2 () and so the set {f0 (x)   f (x)} is independent
in L2 () for any  ∈ N i.e. dim (L2 ()) =∞.

Remarks:

1. C ()− space of all continuous functions which are defined on :

C () ⊂ L2 () 
2. C ()− space of all functions defined on  which have a continuous partial

derivative of order  = 0 1 .

3. C0 ()− space of all continuous functions  defined on R wich have a com-

pact support in :

i.e.

C0 () = {ϕ ∈ C () | ϕ (x) = 0 for ∀ x ∈} 

4. C
0 ()− space of all functions ∈ C0 (), which have continuous partial deri-

vatives of order  = 0 1 .

C
0 () =

⎧⎨⎩ϕ ∈ C0 ()
¯̄̄̄
¯̄ 1++ (x)11 

∈ C0 ()
P

=1

 ≤ 

x = (1  )

⎫⎬⎭
5. C∞0 ()− space of all functions ∈ C0 (), which have continuous partial deri-
vatives of any order, i.e. ϕ ∈ C∞0 (), if ϕ ∈ C

0 () for  = 0 1 
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3.3 Isometry of HILBERT spaces

Definition 3.7 The HILBERT spaces H1 H2 are called isometric, if there exists a
unique mapping  : H1 → H2 with:

• (u+ v) = (u) + (v)

• (uv) = ((u) (v)) ∀uv ∈ H1∀  ∈ C

Conclusion 3.2 This mapping is even a one-to-one mapping:

Proof. Assumption:

(u1) = x; (u2) = x ∧ u1 6= u2
This implies

(u1 − u2) = (u1)− (u2) = 0

ku1 − u2k2 = k(u1)− (u2)k2 = k0k = 0
u1 = u2 contradiction

Notation 3.6 In the application of this isometry, all charactristic properties of a nor-

med space are kept. Thus such spaces are considered as the same, they are identical.

(see for example the real numbers and the points on the number line or the complex

numbers C and the vectors of R2).

Theorem 3.6 Any two separable infinite dimensional HILBERT spaces H1 and H2
are isometric.

Proof. uv ∈ H1 H1 is separable
y u =

P∞
=1 e;  = (u e); v =

P∞
=1 e;  = (u e);

{e}∞=1 is a complete ONS
∞X
=1

||2 ≤ kuk2 ∞ (Bessel0s inequality)

The Riesz-Fischer theorem says that then exists an element x ∈ H2 with the Fourier
coefficients  :

x =

∞X
=1

g; {g}∞=1 is a complete ONS of H2
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Now we define a mapping

(u) = x =

∞X
=1

g (∗)

Further let be (v) = y =
P∞

=1 g
Mapping (∗) is an isometry: Property 1:

(u+ v) = 

Ã


∞X
=1

e + 

∞X
=1

e

!

= 

Ã
 lim

→∞

X
=1

e +  lim
→∞

X
=1

e

!

= 

Ã
lim
→∞

X
=1

( + )e

!
(∗)
=

∞X
=1

( + )g

= 

∞X
=1

g + 

∞X
=1

g

= (u) + (v)

Property 2:

((u) (v)) =

Ã ∞X
=1

g

∞X
=1

g

!
=

∞X
=1



=

Ã ∞X
=1

e

∞X
=1

e

!
= (uv)

Notation 3.7 The classification depends on the choice of the ONSs. For example, l2
and L2 are only two different implementations of the infinite dimensional HILBERT
space.

3.4 Orthogonality and Subspaces

Definition 3.8 The proper subspaces 1 ⊂ H and 2 ⊂ H of a HILBERT space H
are called orthogonal if and only if the inner product (uv) = 0 ∀u ∈1∀v ∈2
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This means that all elements of 1 are orthogonal to every element of 2.

Definition 3.9 For any subset of H the set⊥ = {v ∈ H | (uv) = 0 ∀u ∈}
is called the orthogonal space with respect to  .

Theorem 3.7 Let  ⊂ H be a (proper) subset of the HILBERT space H. Then ⊥

is a closed subspace of H.

Proof. 1) We show: ⊥ is a linear space:
u1u2 ∈⊥ v ∈ y

(u1v) = 0 = (u2v)

(u1 + u2v) = (u1v) + (u2v) = 0

y u1 + u2 ∈⊥

2) We show: ⊥ is closed.:
u ∈ (⊥)+ implies

∃{u}∞=1 | u ∈ ⊥ ∧ lim
→∞

u = u

(uv) = 0 ∀ ∀v ∈

Because of the continuity of the inner product we get

(uv) = lim
→∞

(uv) = 0 y u ∈⊥

Conclusion 3.3 If  is a subspace of H then the intersection  ∩⊥ = {0}.

Conclusion 3.4 If  = H then ⊥ = {0}.

Conclusion 3.5 Let  ⊂ H be a (proper) subset of the HILBERT space H, u ∈ H
and {u} ⊥ , then {u} ⊥  .

Theorem 3.8 PYTHAGOREAN theorem

If u1u2 u∈ H are pairwise orthogonal elements of the HILBERT space H , i.e.

(uu) = 0 for  6= , then

ku1 + u2 + + uk2 = ku1k2 + ku2k2 + + kuk2

Definition 3.10 Let VW ⊂ H be closed subspaces of the HILBERT space H. If every
u ∈ H is uniquely described as the sum u = v +w with v ∈ V and w ∈W then H is

called the direct sum of the subspaces V and W: H = V⊕W
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Definition 3.11 W ⊂ H is called an orthogonal complement of the closed subspace
V ⊂ H if and only if W ⊥ V ∧ H = V⊕W

Theorem 3.9 The orthogonal complement W of a closed subspace V ⊂ H of the HIL-
BERT space H is unique.

Theorem 3.10 Let W be the orthogonal complement of V, that means W ⊥ V ∧
H = V⊕W H: HILBERT space. Then every u ∈ H may be decomposed uniquely into
the sum u = v+w of an element v ∈ V and an element w ∈W such that (vw) = 0

v is called the orthogonal projection of u onto V and w is called the orthogonal

projection of u onto W.
The mappings P : H → V with Pu = v and Q : H → W with Qu = w are called

orthogonal projectors (orthoprojector) onto V or onto W.

w=Qu

H = R3 V = R2 W = R

Remark 3.11 The orthogonal projector P is a linear bounded operator with kPk =
1

Proof. u = v +w  = 1 2

P (u1 + u2) = P ((v1 +w1) + (v2 +w2))

= P ((v1 + v2) + (w1 + w2))

= v1 + v2 = Pu1 + Pu2; ∀u1u2 ∈ H

kPuk2 = kvk2 ≤ kvk2 + kwk2 = kuk2 ∀u = v +w ∈ H

On the other hand kPuk = kuk is satisfied for every u = v ∈ V, and hence kPk = 1

Remark 3.12 Q = I−P ( I− identity operator )
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BEST APPROXIMATION IN HILBERT SPACES

Theorem 3.13 Let U be a closed subspace of the HILBERT space H and u be an

arbitrary element of H.
There exists a unique element u0 ∈ U with

a) ku− u0k = min
v ∈ U

ku− vk and
b) (u− u0v) = 0  ∀v ∈U  u− u0 ∈ U⊥

u0 is called the best approximation of u ∈ H with respect to the subspace U.
Proof: see literature (Kantorowitsch/Akilow)

Meaning: u0 minimises the distance between u and the elements in U. The proof
consists in showing that every minimising sequence {u} ⊂ U \ {u0} is Cauchy, and
hence converges to a point in U \ {u0} that has minimal norm.

Remark 3.14 The minimisation problems min
v ∈ U

ku− vk and min
v ∈ U

F (v) with the

quadratic functional

F (v) =
1

2
(vv)− (uv)

are equivalent in HILBERT spaces over real fields because of:

ku− vk2 = (uu)− 2 (uv) + (vv) = 2
∙
1

2
(vv)− (uv)

¸
+ kuk2 = 2F (v) + kuk2 

Theorem 3.15 Let U be an −dimensional subspace of the HILBERT-space H and

e1  e be a basis in U The best approximation u0 ∈ U of an arbitrary element

u ∈ H can be written as a linear combination of the basis elements such that

u0 =

X
=1

e

The coefficients  are the unique solution of the system of linear equations

(u− u0 e) = (u e)−
X

=1

 (e e) = 0  = 1  

Proof. Using the theorem above it is sufficient to remark that the condition

(u− u0v) = 0 for every v ∈ U is satisfied if and only if this condition is satisfied for

all elements of the basis, i.e. if and only if (u− u0 e) = 0 ( = 1  ). The system of
linear equations arises by substitution of the ansatz u0 =

P
=1

e into the condition

(u− u0v) = 0 ∀ v ∈U.
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Notation 3.8 This theorem is the foundation of the numerical solution of maximum

and minimum problems (quadratic variational problems).

Example 3.13 H=L2[0 1]; Let U ⊂ H be the subspace with the basis functions

ϕ () =  ( = 0 1  ). Hence U = + 1 Let f () be an element of L2[0 1].
The ansatz of the best approximation f() is then

f () =

X
=0

ϕ () 

y

(u− u0 e) = (u e)−
X

=0

 (e e) = 0  = 0 1  

⇐⇒
X

=0

 (ϕϕ) = (f ϕ)  = 0 1  ⎛⎜⎝ (ϕ0ϕ0) · · · (ϕϕ0)
...

...

(ϕ0ϕ) · · · ϕϕ

⎞⎟⎠
⎛⎜⎝ 0

...



⎞⎟⎠ =

⎛⎜⎝ (f ϕ0)
...

(f ϕ)

⎞⎟⎠ (∗)

with

(ϕϕ) =

Z 1

0

ϕ()ϕ() =

Z 1

0

t+ =
1

 + + 1

(f ϕ) =

Z 1

0

f()ϕ() =

Z 1

0

()t

(∗) is the system of linear equations for the continuous approximation of () in the

quadratic mean (method of least squares, see numerics). We get

lim
→∞

Z 1

0

(f()− f())2 = 0: convergence in L2[0 1]

Notation 3.9 If e1  e is an orthogonal basis system in U, i.e. (e e) = 

then  = (u e)  and therefore

u0 =

X
=1

(u e)



e

This is the beginning of a FOURIER series, i.e. the FOURIER series leads us to the

best approximation.
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Example 3.14 H = L2[0 2] and f () ∈ H is given.

U = 
n

1√
2
, 1√


cos () , 1√


sin ()  = 1 2 

o
f () =

0√
2
+

X
=1

∙


cos ()√


+ 
sin ()√



¸
0 =

µ
f 

1√
2

¶
=

Z 2

0

f ()
1√
2



 =

µ
f 
cos()√



¶
=

1√


Z 2

0

f () cos()

 =

µ
f 
sin()√



¶
=

1√


Z 2

0

f () sin();  = 1 2  

In general the factors are hidden in the coefficients   and we get the usual des-

cription of a Fourier series such that

lim
→∞

Z 2

0

(f()− f())2 = 0: convergence in L2[0 2]

3.5 Linear Operators in HILBERT Spaces

3.5.1 Adjoint, symmetric and monotonic Operators

If we are interested in the solutions of linear time independent operator equations

 =  then we have to study the properties of the operators. Examples of such

problems are

• the calculation of static electrical fields,
• research involving the balance of forces in mechanical systems,
• all problems which lead us to systems of linear equations.

We want to compose classes of problems whose solutions have similar properties. If the

operator is a matrix then the properties of the matrix determine the properties of the

solution. For example you know what it means when a matrix is symmetric or positve

definite. Therefore we must generalise such matrix properties to abstract operators in

the HILBERT space.
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Definition 3.12 Given a linear operator in the HILBERT space H with the domain

(A) ⊆ H and the range H; (A) = H. The set

(A∗) = {x ∈ H | ∃y ∈ H  (Aux) = (uy) ∀u ∈ (A)}
is a subset of H. Then the operator A∗ : (A∗) ⊆ H → H with A∗x = y is called
the adjoint operator (or Hermitian conjugate) of A Thus

(Aux) = (uA∗x)  ∀u ∈ (A)∀x ∈ (A∗)

Thus the adjoint operator is the generalisation of conjugate transposes of square ma-

trices.

Definition 3.13 Let H be a HILBERT space. Given the linear operator A :
(A) ⊆ H→ H with (A) = H A is called

• symmetric ⇐⇒ (Aux) = (uAx) ∀ux ∈ (A)

i.e. A∗x = Ax ∀x ∈ (A) ∧ (A) ⊆ (A∗)

• selfadjoint ⇐⇒ A = A∗ i.e. A∗x = Ax ∀x ∈ (A) = (A∗)

• skew symmetric ⇐⇒ (Aux) = −(uAx) ∀ux ∈ (A)

• skew adjoint ⇐⇒ A = −A∗

• compact ⇐⇒ ∀ {x} ⊂ (A) | kxk    ∞ ∀ ∃ {} ⊂ {}∞=1 |
lim→∞ = ex ∈ ()

Example 3.15 H = R; A = ()

=1; Au =

³P

=1 

´
=1
; (A) = H

(Aux) =

Ã
X

=1

x

!
=

X
=1

Ã
X

=1



!
· 

=

X
=1

Ã
X
=1



!
·  (←→ )

=

X
=1



Ã
X

=1



!
= (uA∗x)

A∗ = (∗)

=1 = ()


=1

In case of real matrices the operator A∗ is the matrix A  In case of complex matrices

the operator A∗ is the conjugate transposed matrix A∗.
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Example 3.16 H = L2[ ]; (Au)() =
R 

( )u(); (A) = H; K = R(=

C)

(Aux) =

Z 



∙Z 



( )u()

¸
· x() !

=

Z 



u()y()

⇐⇒Z 



∙Z 



( )x()

¸
· u() =

Z 



u()y()

⇐⇒
y() =

Z 



( )x() = A∗;

A(u(s)) =

Z 



( )u()

y

A∗(u(s)) =

Z 



( )u()

A = A∗ ⇐⇒ ( ) = ( )

In the case of complex functions and a complex field we get ( ) = ( )

Properties of the adjoint operator:

1. A∗ is linear.

2. (A)∗ = A∗

3. Let T : H→ H be a linear bounded operator. =⇒ ∃ a unique operator T∗,
which is linear and bounded, too, with kTk = kT∗k 

4. (A∗)∗ = A because of:

(A∗ux) = (u(A∗)∗x)

= (xA∗u) = (Axu) = (uAx)

Definition 3.14 The linear operator A : (A) ⊆ H→ H is called positive definite,

if and only if: (Auu) ≥  kuk2 for ∀u ∈ (A)  ∈ R   0

3.5.2 Eigenvalues of Operators

Definition 3.15 The complex number  ∈ C is called the eigenvalue of the opera-
tor A : H → H, if there exists an element x ∈ H, x 6= 0 such that Ax = x Every

x 6= 0 with Ax = x is called an eigenelement of the eigenvalue 
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Properties :

1. A : H→ H; A = A∗; y (Axx) ∈ R ∀x
Proof:

(Axx) = (xAx) = (Axx)

2. A : H→ H; A = A∗; y All eigenvalues of A are real numbers.

Proof: Ax = x y

(Axx) = (xx)

 =
(Axx)

kxk2
1∈ R

3. A : H→ H; A = A∗; y Eigenelements which belong to different eigenva-

lues are orthogonal.

Proof: Ax1 = 1x1; Ax2 = 2x2; 1 2 ∈ R; 1 6= 2
y

(Ax1x2) = 1(x1x2)

(Ax1x2) = (x1Ax2) = 2(x1x2) because of  = ∗

Therefore we get

1(x1x2) = 2(x1x2)

(1 − 2)(x1x2) = 0

Because of 1 6= 2 we get (x1x2) = 0

4. A : H→ H; A = A∗; y kAk = sup
kxk=1

|(Axx)| (without proof)

Example 3.17 H = C;  : H→ H; T = ()

=1;

Tx = y   =

X
=1

;  = 1 2  

Tx = x⇐⇒ (T− λI)x = 0
x 6= 0 ⇐⇒ det (T− λI) =0

I = ()

=1 : identity operator; The eigenvalues of the matrix ()


=1 are the eigen-

values of the operator T.
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Example 3.18 Consider the differential operator D = 2

2
; x() is at least twice con-

tinuously differentiable and

x(0) = x() = 0; =⇒ That means x() ∈


C2[0 ]. But this space is only a BA-

NACH space, not a HILBERT space!!

Dx =
2

2
x(t)

!
=x() ∧ x(0) = x() = 0

The eigenvalue problem corresponds to a boundary value problem of an ordinary diffe-

rential equation of second order with constant coefficients. With the ansatz x() = 

we get the characteristic equation

2 −  = 0 y 12 = ±
√


therefore we get the general solutions:

Case 1:   0 :

x() = 1
√
 + 2

−
√
 ∧ x(0) = x() = 0

x (0) = 1 + 2
!
= 0 y 2 = −1

x () = 1
√
 + 2

−
√


= 1
√
 − 1

−
√
 !
= 0⇐⇒ 1 = 0⇐⇒ x() = 0

Case 2:  = 0 :

x() = 1 + 2 ∧ x(0) = x() = 0

x (0) = 1
!
= 0

x () = 2 ·  !
= 0⇐⇒ 2 = 0⇐⇒ x() = 0

Case 3:   0 :

x() = 1 cos(
√
−) + 2 sin(

√
−) ∧ x(0) = x() = 0

x (0) = 1 cos 0 = 1
!
= 0

x () = 2 sin(
√
−) !

= 0⇐⇒ 2 = 0 ∨ sin(
√
−) = 0

2 = 0 is not constructive. Therefore

sin(
√
−) = 0⇐⇒

√
− = 

⇐⇒  = −2
⇐⇒ x () =  sin ()  ∈ Z

Only for the eigenvalues  = −2 we get nontrivial solutions.
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That means x() ∈. But


C2[0 ] is only a BANACH space, not a HILBERT space and

we do not know an inner product in this space. That’s why we can not use the Fourier

series.

Theorem 3.16 Let A : (A) ⊆ H → H be a self adjoint, positive definite opera-

tor with a countable system of eigensolutions {u}∞=1 such that the eigenelements
{u}∞=1 are a complete ONS in H. Then
1.

Au =

∞X
=1

(uu)u 

∀u ∈ () = {u ∈ H |
∞X
=1

|(uu)|2 ∞}

2. ∃ A−1 : H→ H; A−1 is linear and bounded.

A−1f =

∞X
=1

1


(f u)u ∀f ∈ 

°°A−1f°° ≤ 1


kfk with 0   ≤ 1 ≤ 2 ≤ 

3. The solution of the operator equation Au = f  f ∈ H can be written as

u = A−1f =
∞X
=1

1


(f u)u

(without proof)

Notation 3.10 To prove and use this theorem a HILBERT space is absolutely necessa-

ry! If you don’t have a HILBERT space then look for an embedding of your problem in

a HILBERT space.

Notation 3.11 The following conditions are equivalent:

1. u ∈ (A)

2.

∞X
=1

(uu)u is a convergent series in H.

3.

∞X
=1

|(uu)|2 is a convergent number series.
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3.5.3 Linear Functionals

Definition 3.16 Operators in a HILBERT space H over the field K (R or C) which
map from H to K are called functionals or linear forms: f : H→ K

Definition 3.17 The functional f : H→ K is called:

• linear, if : f(u+ v) = (u) + (v) ∀uv ∈ H; ∀  ∈ K
• bounded, if: ∃ ∈ R   0 | |(u)| ≤ kuk ∀u ∈ H
• continuous, if: lim→∞ u = u implies lim→∞ f(u) = f(u);
uu ∈ H

Definition 3.18 Given a linear bounded functional f : H→ K. The number

kfk = sup
kuk=1

|f(u)| u ∈ H

= inf{ ∈ R | |f(u)| ≤ kuk ∀u ∈ H}
is called the norm of the functional.

Analogous to the operator theory we can prove the following theorem (homework):

Theorem 3.17 A linear functional in the HILBERT space H is continuous if and only
if it is bounded.

Theorem 3.18 Let H be a HILBERT space H over the field K and u0 be any fixed

element of H. Then f(x) = (xu0) defines a linear functional in H

Proof.

f(x+ y) = (x+ yu0)

= (xu0) + (yu0)

= f(x) + βf(y)

Notation 3.12 A in that way defined linear functional is continuous:

1) |f(x)| = |(xu0)| ≤ kxk ku0k y |f(x)|
kxk ≤ ku0k

2)
|f(x)|
kxk ≤  = inf{ ∈ R| |()| ≤  kxk} = kfk y kfk ≤ ku0k

3) |f(u0)| = |(u0u0)| = ku0k2 implies |f(u0)|
ku0k = ku0k

Therefore we get kfk = ku0k  This means f is bounded. y f is continuous.



3.5. LINEAR OPERATORS IN HILBERT SPACES 79

Theorem 3.19 The HILBERT space representation theorem (RIESZ)

Let H be a HILBERT space H over the field K with the inner product ( ) and let f(x)
be a continuous linear functional in H. Then there exists a fixed unique element u0 ∈ H
such that f(x) = (xu0) ∀x ∈ H and kfk = ku0k (without proof)

Example 3.19 a) H = R with (xy) =
P

=1

; f : Rn → R

f(x) = (xa) =

X
=1

; a ∈ R; a is fixed

b) H = l2 with (xy) =
∞P
=1

; f : l2 → C

f(x) = (xb) =

∞X
=1

; b = {1 2 }; b is fixed

c) H =L2[ ] with (xy) =
R 

x()y(); f : L2[ab]→ C

f(x) =

Z 



x()g0(); g0() ∈ L2[ ]; g0() is fixed

Notation 3.13 In the spaces L or. l with  6= 2 the common shape of continuous

linear functionals is given by (x) = (xu) too, with u ∈ L (or u ∈ l) and 1

+ 1


=

1; 1   ∞. To prove this we need the Hölder inequality:

l :
¯̄̄X∞

=1


¯̄̄
≤
³X∞

=1
||

´ 1

³X∞

=1
||

´ 1


∞

L :

¯̄̄̄Z 



fg

¯̄̄̄
≤
µZ 



|f | 
¶ 1


µZ 



|g| 
¶ 1



∞

Definition 3.19 Given a sequence {x}∞=1 in the HILBERT space H.
If lim→∞ f(x) = f(x) for every linear continuous functional f on H then {x}∞=1
tends weakly to x ∈ H as n tends to infinity. We write: x  x

Notation 3.14 Norm convergent sequences {x}∞=1 ⊂ H are called strongly conver-

gent. That means: kx − xk →∞→ 0.

Theorem 3.20 The strong convergence implies the weak convergence.

Proof.

|f(x)− f(x)| = |f(x − x)| = |(x − xu0)| ≤ ku0k kx − xk = kfk kx − xk →∞−→ 0
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Notation 3.15 The converse is not true.

Example 3.20 H =L2[0 ] with f(x) =
R 
0
x()y(); y ∈ L2[ab]; y is fixed and

real.

We consider the sequence x = x() = sin();  ∈ N

f(x) =

Z 

0

sin()y()

f(x) are the Fourier coefficients of () without the constant factor. Thus: f(x)
→∞−→ 0

and

f(x)
→∞−→ 0 =

Z 

0

0 · y() = f(0) ∀y ∈ L2[0 ]
i.e. for all functionals  . On the other hand we get

kx − 0k2 =
Z 

0

(sin()− 0)2 = 

2
contradiction

=⇒ {x} tends weakly to 0 but not strongly.

3.5.4 Bilinear Forms

Definition 3.20 A bilinear form on a HILBERT space H over the field K is a bilinear
mapping a : H×H→ K. That means:

a(u+ vw) = a(uw) + a(vw)

a(w u+ v) = a(wu) + a(wv) ∀uvw ∈ H ∀  ∈ K
Definition 3.21 The bilinear form a : H×H→ K is called

• bounded, if there ∃   0;  ∈ R | |a(uv)| ≤  kuk kvk ∀uv ∈ H
• symmetric, if a(uv) = a(vu) ∀uv ∈ H
• positive semidefinite, if a(uu) ≥ 0 ∀u ∈ H
• positive definite, if a(uu) ≥  kuk2 ∀u ∈ H ∧   0  = 

Example 3.21 H = R with (uv) =
P

=1

; a( ) : Rn ×Rn → R

a(uv) = (uv) =

X
=1

;  = ()


=1

a is symmetric (positive definit) if and only if the matrix  is symmetric (positive

definit).



4 Variational Calculus

From the classical analysis the search of local extrema of a real function is known:

We are looking for real numbers 0, for which a given a real function  () has a local

(or relative) maximum or minimum point. That means:

Definition 4.1 Let the domain X of () be a metric space. Then  is said to have

a local (or relative) maximum point at the point 0 if ∃   0 | (0) ≥ () ∀ ∈ X
with (0 )  . Similarly, the function has a local minimum point at 0 if

∃   0 | (0) ≤ () ∀ ∈ X within distance  of 0.

If () is a differentiable function the critical points can be found by the necessary

requirement  0 (0) = 0 . To decide wether 0 is a maximum or a minimum we take
the second derivative test or the higher order derivative test which use the values of

higher order derivatives at 0.. (sufficient requirement).

Calculus of variations deals with maximising or minimising functionals in common

function spaces X and it is possible to generalise the way above.
Given a functional f (u) : X→ R. Wanted functions u0 ∈ X, such that f (u0) is a
minimum or a maximum with respect to the elements of an environment of u0. Solving

this problem we have to generalise the derivatives  0  00  of a real function  () and
the necessary and sufficient conditions for an extremum.

4.1 Variation and Derivatives of Functionals

Let X be a normed space over the field K = R and f :  (u0) ⊆ X → R a functional,
which is defined in the environment  (u0) of u0

Then  () = f (u0 + h) is for every h ∈ X a real function of the parameter  ∈ R

Definition 4.2 f (u0h) ≡ 0 (0) is called first variation of f at u0 in the direction
h. The nth variation f (u0h) of the functional f at u0 in the direction h is the n



derivative of  () at  = 0 :

f (u0h) ≡ () (0)  = 1 2 

Definition 4.3 If the first variation f (u0h) exists for every h ∈ X and if it is linear
and continuous then the GÂTEAUX derivative f 0 (u0) (·) : X→ R of the functional

f at u0 is defined by

f 0 (u0) (h) = f (u0h) für ∀ h ∈ X

81
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Definition 4.4 The GÂTEAUX derivative f 0 (u0) is called FRÉCHET derivative,

if

f (u0 + h)− f (u0) = f 0 (u0) (h) + khk  (h)
with lim

h→0
 (h) = 0 für ∀ h ∈ X

Example 4.1 X = R f (u) is a continuous and differentiable function: u = x ∈ ( )

f : ( ) ⊆ R→ R

1 variation of f :

f (uh) =



f (x+ h)|=0 =

f (x)

x
h ≡ f(x)

2 variation of f :

2f (uh) =
2

2
f (x+ h)|=0 =

2f (x)

x2
h2

That means the GATEAUX derivative is the ordinary derivative


x
f (x) 

If f (u) is twice continuously differentiable the FRÉCHET derivative exists. From

the TAYLOR series we get then for f (u) at u = x

f (u+ h)− f (u) =
f (x)

x
h+

2f (ξ)

x2
h2

2
=

f (x)

x
h+  (h)h

with | (h)| → 0 as h→ 0

Example 4.2 X = R, u =−→x=(1 2  )  f (u) = f (1  ) is a continuously
differentiable function

f :M ⊆ R → R

1 variation of f : is the directional derivative of f (u) at u =−→x∈M in the direction

h =
−→
h = (1  )


 If h is normelised we get:

f (uh) =



f (1 + 1   + )|=0

=

X
=1

f
¡−→x ¢


 ≡ 
¡
f
¡−→x ¢¢ ·−→h 
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2 variation of f :

2f (uh) =




X
=1

f
³−→x+−→h ´




¯̄̄̄
¯̄
=0

=

X
=1

X
=1

2f
¡−→x ¢


 =

³
G
¡−→x ¢−→h −→h ´

with the functional matrix G
¡−→x ¢ = Ã2f

¡−→u ¢


!

=1



GATEAUX derivative: f 0 (u) = f 0
¡−→x ¢ = 

¡
f
¡−→x ¢¢

f 0 (u) (h) =
³
f 0
¡−→x ¢ −→h ´ = 

¡
f
¡−→x ¢¢ ·−→h

with the estimation

|f 0 (u) (h)| ≤
°° ¡f ¡−→x ¢¢°°°°°−→h °°° 

If f is continuously differentiable in an environment of −→x then the GATEAUX deriva-
tive exists at −→x .
FRÉCHET derivative: From the TAYLOR series we get then:

f (u+ h)− f (u) = 
¡
f
¡−→x ¢¢ ·−→h + 1

2

³
G
³−→
ξ
´−→
h 
−→
h
´

= f 0 (u)
³−→
h
´
+
°°°−→h °°° ³−→h ´

with¯̄̄

³−→
h
´¯̄̄
=

1

2
°°°−→h °°°

¯̄̄³
G
³−→
ξ
´−→
h 
−→
h
´¯̄̄
≤ 1
2

°°°G³−→ξ ´°°°°°°−→h °°°→ 0 for
°°°−→h °°°→ 0.

If f is twice continuously differentiable in an environment of −→x the FRÉCHET deri-

vative at −→x exists.

Example 4.3 Let X = H be a HILBERT space and

f (u) =
1

2
a (uu)− (bu)

be a quadratic functional f : H→ R with the symmetric bounded bilinear form
a (· ·)

|a (uv)| ≤  kuk kvk ∀ uv ∈ H
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and the linear functional (bu) with b ∈ H fixed.
We define

 () = f (u+h) =
1

2
a (u+ hu+ h)− (bu+ h)

=
1

2
a(uu) +

1

2
a (uh) +

1

2
a (hu) +

1

2
a(hh)− (bu)− (bh)

=
2

2
a (hh) +  [a (uh)− (bh)] + f (u)

1 variation of f :

f (uh) = 0 (0) = a (uh)− (bh)
2 variation of f :

2f (uh) = 00 (0) = a (hh)

GATEAUX derivative:

f 0 (u) (h) = a (uh)− (bh) and

|f 0 (u) (h)| ≤ ( kuk+ kbk) khk

If there exists a linear operator A : H → H with

(Auh) = a (uh) ∀ h ∈ H

then GATEAUX derivative is f 0 (u) = Au− b
The FRÉCHET derivative exists because

f (u+ h)− f (u) = a (uh)− (bh) + 1
2
a (hh)

= f 0 (u) (h) + khk  (h)

with

| (h)| = 1

2 khk |a (hh)| ≤
1

2
 khk→ 0 für khk→ 0

Example 4.4 In typical onedimensional variational problems the functionals are defi-

nit integrals:

f : X→ R mit f = f (u) =

Z


 (u () u0 ()) 

with the so called LAGRANGE function

 =  (u () u0 ()) ;  : [ ]×R2 → R für ∀ u () ∈ X = C1 ( ) 
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Let  be twice continuously differentiable with respect to all variables and u() = 
plus u() = 

Now we calculate the first variation of f (u) with h ∈


C
1

( ) (uniform convergence!)

 () = f (u0+h) =

Z


 (u0 () + h () u00 () + h0 ()) 

y

0 ()|=0 =
Z



[0 (u0u
0
0)h

0 () +  (u0u
0
0)h ()] 

Because of h () = h () = 0 we get by integration by parts

f (u0h) = 0 ()|=0

=

Z


∙
− 


0 (u0u

0
0) +  (u0u

0
0)

¸
h () 

Because  is twice continuously differentiable, we get

f (u0+h)− f (u0) =

Z


[ (u0 () + h () u
0
0 () + h

0 ())−  (u0 () u
0
0 ())] 

=

Z


[ (u0u
0
0)h () + 0 (u0u

0
0)h

0 () + h(h)] 

with k (h)k → 0 for h→ 0 By integration by parts we get

=

Z


∙
 (u0u

0
0)−




0 (u0u

0
0)

¸
h +

Z


h(h) 

If h → 0 then the 2 integral tends to zero, too. y The FRÉCHET derivative

exists.

f 0 (u0) =  (u0u
0
0)−




0 (u0u

0
0)
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4.2 Extrema and Variational problems

We concern functionals f on the Banach space X = B (Hilbert space X = H) and look
for their extrema.

Theorem 4.1 Necessary requirement for an extremum:

If there is at u0 ∈


D a local extremum of f : D ⊂ X→ R D open, then

f (u0;h) = 0 ∀ h ∈ X (∗)

Definition 4.5 Points u0 ∈


D where the condition (∗) is satisfied are called critical
or stationary points of f. A saddle point is a stationary point which is not an

extremum.

Definition 4.6 The variational problem on X is: Wanted the stationary points of f 

If there exists the FRECHET derivative f 0 (u0) then you can prove the following theo-
rem:

Theorem 4.2 If f : D ⊂ X → R is a FRECHET-differentiable functional and is

u0 ∈


D the place of a local extremum of f then its FRECHET derivative vanishes:

f 0 (u0) = 0

This equation ist called EULER-LAGRANGE equation or EULER equation.

Proof. Let u0 ∈


D be a local minimum point of f .

y f (u) ≥ f (u0) ∀u ∈ (u0)

We define

u = u0 + h;   0; h ∈ X; khk = 1
Because of the existance of the FRECHET derivative we get

f (u0 + h) = f (u0) + f
0 (u0) (h) + khk  (h) with lim

t→0
 (h) = 0

Thus

0 ≤ f (u0 + h)− f (u0)


= f 0 (u0) (h) + khk  (h) = f 0 (u0) (h) +  (h)

0 ≤ f 0 (u0) (h) ∀h ∈ X  khk = 1  lim
t→0

 (h) = 0
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Using −h instaed of h we will get:

0 ≤ f 0 (u0) (−h) = −f 0 (u0) (h) 

Therefore

f 0 (u0) (h) = 0 ∀h ∈ X; khk = 1
Arbitrary elements of X can be represented by v = h with  ∈ R.y

f 0 (u0) (h) = 0 ∀ h ∈ X
f 0(u0)(v) = 0 ∀ v ∈ X

Example 4.5 Formulation of the variational problems for the previous examples:

Example 4.1: The EULER-LAGRANGE equation


x
f (x) = 0 corresponds to the ne-

cessary requirement for an extremum of f (x) 

Example 4.2: If the EULER-LAGRANGE equation is satisfied:

 (f (u0)) = 0

then u0 is a stationary point of f (necessary requirement for an extremum of f (x)).

Example 4.3: If the EULER-LAGRANGE equation is satisfied:

Au0−b = 0

then u0 ∈ H is a stationary point of f .

In the example 4.4 the domain X of f is not a space or a subspace, but a manifold of
a BANACH space.

4.3 Constrained Extrema

Let X = B be a BANACH space (or a HILBERT space X = H ). V is then a subspace
of X, f : X→ R a functional, u∗ ∈ X Then

M = u∗ +V := {u∗ + v | v ∈ V}

is a linear manifold. We concern the constraint f |M and look for their extrema, i.e. u0
is an extremum of f with the additional condition u0 ∈ M Let the functional f be

FRÉCHET differentiable.
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Definition 4.7 Points u0 ∈ M with f 0[u0] = 0 ∀h ∈ V are called constrained

extrema of f with the additional condition u0 ∈M

Definition 4.8 Variational problems on a manifold:

Wanted the stationary point u0 of f with the additional condition u0 ∈M

Theorem 4.3 f : D ⊂ X→ R is a FRÉCHET differentiable functional, V a subspace
of X, u∗ an arbitrary fixed point of X and M = u∗ + V a linear manifold of X. If
the constraint f |M has an extremum at u0 then the EULER-LAGRANGE equation is

satisfied there:

f 0 (u0) = 0

Proof. We define the functional

bf (v) = f(u∗ + v) ∀v ∈V
which maps V in R. Because f is Fréchet differentiable we get for every vh ∈ V:
bf (v + h) = f(u∗ + v + h)

= f(u
∗
+ v) + f 0 (u∗ + v) (h) + khk  (u∗ + vh) with lim

h→0
 (u∗ + vh) = 0

With b(vh) = (u∗ + vh) we obtain

bf (v + h) = bf(v) + f 0 (u∗ + v) (h) + khkb (vh) ∀v ∈V

and therefore

f 0 (u∗ + v) (h) = bf 0 (v) (h)
The theorem above implies bf 0 (v0) (h) = 0, i.e. f 0 (u∗ + v0) (h) = 0 ∀h ∈ V
for every extemum v0 ∈ V of bf . With

u0 = u
∗ + v0

we get the statement f 0 (u0) = 0.

Example 4.6 Consider example 4.4. The condition there implies

 (u0h) = 0

=

Z


∙
− 


0 (u0u

0
0) +  (u0u

0
0)

¸
h () 
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for every h ∈


C
1

( )  Thus we get for a critical point of f the EULER-LAGRANGE

equation



(u0 (uu

0)) = u (uu
0) ()1

or (if we differentiate):

u − u0 − uu0u
0 − u0u0u

00 = 0 ()2 

In this case the EULER-LAGRANGE equation is in general a nonlinear ordinary

differential equation of 2nd order for the function u () (with boundary values).

Example 4.7 Wanted the beeline between the points 0 (0 0) and 1 (1 1) (with

0 6= 1) in a plane. Let u = u () be the function of the curve which connect the points

0 and  ( ). The length f (u) of this curve is then:

f (u) =

1Z
0

q
1 + (u0 ())2

with the LAGRANGE function

 =  (u0) =
q
1 + (u0 ())2

Using

u = 0 and u0 =
u0q

1 + (u0 ())2

we get the EULER-LAGRANGE equation





⎛⎝ u0q
1 + (u0 ())2

⎞⎠ = 0

y

u0q
1 + (u0 ())2

= 

(u0)2 = 2
³
1 + (u0)2

´
(u0)2

¡
1− 2

¢
= 2

u0 () = ±
r

2

1− 2
≡  = 
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Therefore the beeline is the straight line:

u () = + 

as it was to be expected. The line must go through the two points 0 (0 0) and

1 (1 1) with 0 6= 1.

Using this boundary conditions we get:

u (0) = 0 +  = 0
u (1) = 1 +  = 1

⇒
µ

0 1

1 1

¶µ




¶
=

µ
0
1

¶
⇒  =

0 − 1

0 − 1
 =

01 − 10

0 − 1


Example 4.8 Brachistochrone Curve (curve of fastest descent )

Wanted a curve lying on a plane, going from 0 (0 0) to 1 ( ) (with  6= 0   0)

which a particle with the mass  slides frictionlessly in the shortest time under the

influence of a uniform gravitational field with the gravitational constant .

u = u () function of the curve

from 0 to 1
 =  () parameter of the length

of the curve from 0 to 1
with  (0) = 0 and

 =

q
1 + (0)2





� � � �

�

�

�

�

�

Using the law of conservation of energy 1
2
2 − = 0 we get for the velocity  of

the particle

 =



=
p
2u

Thus

f (u) =

Z
0

 =

Z
0

1


 =

Z
0

s
1 + (u0)2

2u


with the LAGRANGE function

 =  (uu0) =

s
1 + (u0)2

2u
=

1√
2

s
1 + (u0)2

u

Variational problem:

We look for a function u () ∈ C1 (0 ) with f (u)→ min u (0) = 0 and u () = 

Because the LAGRANGE function only depends on u and u0 the EULER equation
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(EG2) is :

0 =  − uu0u
0 − u0u0u

00

= u0 ( − uu0u
0 − u0u0u

00)

=



( − u0u0)

Thus the EULER equation has the workaround

 − 00 =
1√
2

⎡⎣s1 + (u0)2
u

− (u0)2q
u
¡
1 + (u0)2

¢
⎤⎦ = e

Multiplication by
√
2 and expansion by

q¡
1 + (u0)2

¢
give

1 + (u0)2 − (u0)2q
u
¡
1 + (u0)2

¢ =  with  =
p
2 e.

Therefore we get

u
³
1 + (u0)2

´
=  with  =

1

2
. .

Now let be u0 = cot  Then

u =


1 + cot2 
=  sin2  =



2
(1− cos 2) 

Further

 =
u

u0
=
2 sin  cos 

cot 
= 2 sin2 

=  (1− cos 2) 
 = 

µ
− 1

2
sin 2

¶
+

=


2
(2− sin 2) +

Using the boundary conditions we get

(0) = 0 y  = 0

u(0) = 0 =  · 0
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Therefore the constant  must be calculated by using the end point of the curve. Setting

 = 2 we get a set of cycloids with 
2
= .  is the radius of the unrolling circle. (u-axis

points downward!):

 =


2
(− sin)

u =


2
(1− cos)

4.4 Generalisations

Given the LAGRANGE function:  : [ ]×R+1 → R with

 = 
¡
u () u0 ()  u() ()

¢
für ∀ u () ∈ X = C ( ) 

We assume that  is often enough continuously differentiable with respect to all va-

riables.

Using the LAGRANGE function we construct the functional:

f = f (u) =

Z



¡
u () u0 ()  u() ()

¢


Definition 4.9 Variational problem on a manifold

Wanted the critical points u () ∈ C ( ) of f (u) with the additional

conditions u() () =  and u() () = ;  ∈ R  ∈ R  = 0 1  − 1

Theorem 4.4 Every solution u0 () of this variations problem is a solution of the

EULER-LAGRANGE equation, too.

 − 


0 +

2

2
00 ∓ + (−1) 


() = 0 ()3

We calculate the first variation of f (u) with h ∈


C ( ),

h() () = h() () = 0  = 0 1  − 1 and  ∈ R :

 () = f (u0 + h) =

Z



³
u0 + hu00 + h0 u()0 + h()

´


0 ()|=0 =

Z


£
h+ 0h

0 + + ()h
()
¤
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For  = 1   we integrate by parts −times and get
Z



(())h
()

=
£
(())h

(−1)¤

−

Z


µ



()

¶
h(−1)

=
£
(())h

(−1)¤

−
∙µ




()

¶
h(−2)

¸


+

Z


µ
2

2
()

¶
h(−2)

= 

=

"
−1X
=0

(−1)
µ




()

¶
h(−1−)

#


+ (−1)
Z



µ



()

¶
h 

Using "
−1X
=0

(−1)
µ




()

¶
h(−1−)

#


= 0

we obtain the EULER-LAGRANGE equation

0 ()|=0 =

Z


X
=0

(−1)
µ




()

¶
h 

!
= 0 ∀h ∈



C


( )  ie

X
=0

(−1)
µ




()

¶
= 0


